Step | Hyp | Ref
| Expression |
1 | | fzfid 13621 |
. . . . 5
⊢ (𝑁 ∈ (0...𝐴) → (((𝐴 − 𝑁) + 1)...𝐴) ∈ Fin) |
2 | | elfzelz 13185 |
. . . . . . 7
⊢ (𝑘 ∈ (((𝐴 − 𝑁) + 1)...𝐴) → 𝑘 ∈ ℤ) |
3 | 2 | zcnd 12356 |
. . . . . 6
⊢ (𝑘 ∈ (((𝐴 − 𝑁) + 1)...𝐴) → 𝑘 ∈ ℂ) |
4 | 3 | adantl 481 |
. . . . 5
⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (((𝐴 − 𝑁) + 1)...𝐴)) → 𝑘 ∈ ℂ) |
5 | 1, 4 | fprodcl 15590 |
. . . 4
⊢ (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (((𝐴 − 𝑁) + 1)...𝐴)𝑘 ∈ ℂ) |
6 | | fzfid 13621 |
. . . . 5
⊢ (𝑁 ∈ (0...𝐴) → (1...(𝐴 − 𝑁)) ∈ Fin) |
7 | | elfznn 13214 |
. . . . . . 7
⊢ (𝑘 ∈ (1...(𝐴 − 𝑁)) → 𝑘 ∈ ℕ) |
8 | 7 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴 − 𝑁))) → 𝑘 ∈ ℕ) |
9 | 8 | nncnd 11919 |
. . . . 5
⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴 − 𝑁))) → 𝑘 ∈ ℂ) |
10 | 6, 9 | fprodcl 15590 |
. . . 4
⊢ (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘 ∈ ℂ) |
11 | 8 | nnne0d 11953 |
. . . . 5
⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴 − 𝑁))) → 𝑘 ≠ 0) |
12 | 6, 9, 11 | fprodn0 15617 |
. . . 4
⊢ (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘 ≠ 0) |
13 | 5, 10, 12 | divcan3d 11686 |
. . 3
⊢ (𝑁 ∈ (0...𝐴) → ((∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘 · ∏𝑘 ∈ (((𝐴 − 𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘) = ∏𝑘 ∈ (((𝐴 − 𝑁) + 1)...𝐴)𝑘) |
14 | | fznn0sub 13217 |
. . . . . . . 8
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 − 𝑁) ∈
ℕ0) |
15 | 14 | nn0red 12224 |
. . . . . . 7
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 − 𝑁) ∈ ℝ) |
16 | 15 | ltp1d 11835 |
. . . . . 6
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 − 𝑁) < ((𝐴 − 𝑁) + 1)) |
17 | | fzdisj 13212 |
. . . . . 6
⊢ ((𝐴 − 𝑁) < ((𝐴 − 𝑁) + 1) → ((1...(𝐴 − 𝑁)) ∩ (((𝐴 − 𝑁) + 1)...𝐴)) = ∅) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ (0...𝐴) → ((1...(𝐴 − 𝑁)) ∩ (((𝐴 − 𝑁) + 1)...𝐴)) = ∅) |
19 | | nn0p1nn 12202 |
. . . . . . . 8
⊢ ((𝐴 − 𝑁) ∈ ℕ0 → ((𝐴 − 𝑁) + 1) ∈ ℕ) |
20 | 14, 19 | syl 17 |
. . . . . . 7
⊢ (𝑁 ∈ (0...𝐴) → ((𝐴 − 𝑁) + 1) ∈ ℕ) |
21 | | nnuz 12550 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
22 | 20, 21 | eleqtrdi 2849 |
. . . . . 6
⊢ (𝑁 ∈ (0...𝐴) → ((𝐴 − 𝑁) + 1) ∈
(ℤ≥‘1)) |
23 | 14 | nn0zd 12353 |
. . . . . . 7
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 − 𝑁) ∈ ℤ) |
24 | | elfzel2 13183 |
. . . . . . 7
⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℤ) |
25 | | elfzle1 13188 |
. . . . . . . 8
⊢ (𝑁 ∈ (0...𝐴) → 0 ≤ 𝑁) |
26 | 24 | zred 12355 |
. . . . . . . . 9
⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℝ) |
27 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℤ) |
28 | 27 | zred 12355 |
. . . . . . . . 9
⊢ (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℝ) |
29 | 26, 28 | subge02d 11497 |
. . . . . . . 8
⊢ (𝑁 ∈ (0...𝐴) → (0 ≤ 𝑁 ↔ (𝐴 − 𝑁) ≤ 𝐴)) |
30 | 25, 29 | mpbid 231 |
. . . . . . 7
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 − 𝑁) ≤ 𝐴) |
31 | | eluz2 12517 |
. . . . . . 7
⊢ (𝐴 ∈
(ℤ≥‘(𝐴 − 𝑁)) ↔ ((𝐴 − 𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴 − 𝑁) ≤ 𝐴)) |
32 | 23, 24, 30, 31 | syl3anbrc 1341 |
. . . . . 6
⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ (ℤ≥‘(𝐴 − 𝑁))) |
33 | | fzsplit2 13210 |
. . . . . 6
⊢ ((((𝐴 − 𝑁) + 1) ∈
(ℤ≥‘1) ∧ 𝐴 ∈ (ℤ≥‘(𝐴 − 𝑁))) → (1...𝐴) = ((1...(𝐴 − 𝑁)) ∪ (((𝐴 − 𝑁) + 1)...𝐴))) |
34 | 22, 32, 33 | syl2anc 583 |
. . . . 5
⊢ (𝑁 ∈ (0...𝐴) → (1...𝐴) = ((1...(𝐴 − 𝑁)) ∪ (((𝐴 − 𝑁) + 1)...𝐴))) |
35 | | fzfid 13621 |
. . . . 5
⊢ (𝑁 ∈ (0...𝐴) → (1...𝐴) ∈ Fin) |
36 | | elfznn 13214 |
. . . . . . 7
⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ) |
37 | 36 | nncnd 11919 |
. . . . . 6
⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ) |
38 | 37 | adantl 481 |
. . . . 5
⊢ ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ) |
39 | 18, 34, 35, 38 | fprodsplit 15604 |
. . . 4
⊢ (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...𝐴)𝑘 = (∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘 · ∏𝑘 ∈ (((𝐴 − 𝑁) + 1)...𝐴)𝑘)) |
40 | 39 | oveq1d 7270 |
. . 3
⊢ (𝑁 ∈ (0...𝐴) → (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘) = ((∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘 · ∏𝑘 ∈ (((𝐴 − 𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘)) |
41 | 24 | zcnd 12356 |
. . . . . 6
⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℂ) |
42 | 27 | zcnd 12356 |
. . . . . 6
⊢ (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℂ) |
43 | | 1cnd 10901 |
. . . . . 6
⊢ (𝑁 ∈ (0...𝐴) → 1 ∈ ℂ) |
44 | 41, 42, 43 | subsubd 11290 |
. . . . 5
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 − (𝑁 − 1)) = ((𝐴 − 𝑁) + 1)) |
45 | 44 | oveq1d 7270 |
. . . 4
⊢ (𝑁 ∈ (0...𝐴) → ((𝐴 − (𝑁 − 1))...𝐴) = (((𝐴 − 𝑁) + 1)...𝐴)) |
46 | 45 | prodeq1d 15559 |
. . 3
⊢ (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = ∏𝑘 ∈ (((𝐴 − 𝑁) + 1)...𝐴)𝑘) |
47 | 13, 40, 46 | 3eqtr4rd 2789 |
. 2
⊢ (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘)) |
48 | | fallfacval3 15650 |
. 2
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘) |
49 | | elfz3nn0 13279 |
. . . 4
⊢ (𝑁 ∈ (0...𝐴) → 𝐴 ∈
ℕ0) |
50 | | fprodfac 15611 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ (!‘𝐴) =
∏𝑘 ∈ (1...𝐴)𝑘) |
51 | 49, 50 | syl 17 |
. . 3
⊢ (𝑁 ∈ (0...𝐴) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
52 | | fprodfac 15611 |
. . . 4
⊢ ((𝐴 − 𝑁) ∈ ℕ0 →
(!‘(𝐴 − 𝑁)) = ∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘) |
53 | 14, 52 | syl 17 |
. . 3
⊢ (𝑁 ∈ (0...𝐴) → (!‘(𝐴 − 𝑁)) = ∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘) |
54 | 51, 53 | oveq12d 7273 |
. 2
⊢ (𝑁 ∈ (0...𝐴) → ((!‘𝐴) / (!‘(𝐴 − 𝑁))) = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴 − 𝑁))𝑘)) |
55 | 47, 48, 54 | 3eqtr4d 2788 |
1
⊢ (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴 − 𝑁)))) |