MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacval4 Structured version   Visualization version   GIF version

Theorem fallfacval4 16009
Description: Represent the falling factorial via factorials when the first argument is a natural. (Contributed by Scott Fenton, 20-Mar-2018.)
Assertion
Ref Expression
fallfacval4 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))

Proof of Theorem fallfacval4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13938 . . . . 5 (𝑁 ∈ (0...𝐴) → (((𝐴𝑁) + 1)...𝐴) ∈ Fin)
2 elfzelz 13485 . . . . . . 7 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℤ)
32zcnd 12639 . . . . . 6 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℂ)
43adantl 481 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)) → 𝑘 ∈ ℂ)
51, 4fprodcl 15918 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘 ∈ ℂ)
6 fzfid 13938 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...(𝐴𝑁)) ∈ Fin)
7 elfznn 13514 . . . . . . 7 (𝑘 ∈ (1...(𝐴𝑁)) → 𝑘 ∈ ℕ)
87adantl 481 . . . . . 6 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℕ)
98nncnd 12202 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℂ)
106, 9fprodcl 15918 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ∈ ℂ)
118nnne0d 12236 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ≠ 0)
126, 9, 11fprodn0 15945 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ≠ 0)
135, 10, 12divcan3d 11963 . . 3 (𝑁 ∈ (0...𝐴) → ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
14 fznn0sub 13517 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℕ0)
1514nn0red 12504 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℝ)
1615ltp1d 12113 . . . . . 6 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) < ((𝐴𝑁) + 1))
17 fzdisj 13512 . . . . . 6 ((𝐴𝑁) < ((𝐴𝑁) + 1) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
1816, 17syl 17 . . . . 5 (𝑁 ∈ (0...𝐴) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
19 nn0p1nn 12481 . . . . . . . 8 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) + 1) ∈ ℕ)
2014, 19syl 17 . . . . . . 7 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ ℕ)
21 nnuz 12836 . . . . . . 7 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2838 . . . . . 6 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ (ℤ‘1))
2314nn0zd 12555 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℤ)
24 elfzel2 13483 . . . . . . 7 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℤ)
25 elfzle1 13488 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → 0 ≤ 𝑁)
2624zred 12638 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℝ)
27 elfzelz 13485 . . . . . . . . . 10 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℤ)
2827zred 12638 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℝ)
2926, 28subge02d 11770 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (0 ≤ 𝑁 ↔ (𝐴𝑁) ≤ 𝐴))
3025, 29mpbid 232 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ≤ 𝐴)
31 eluz2 12799 . . . . . . 7 (𝐴 ∈ (ℤ‘(𝐴𝑁)) ↔ ((𝐴𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴𝑁) ≤ 𝐴))
3223, 24, 30, 31syl3anbrc 1344 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ (ℤ‘(𝐴𝑁)))
33 fzsplit2 13510 . . . . . 6 ((((𝐴𝑁) + 1) ∈ (ℤ‘1) ∧ 𝐴 ∈ (ℤ‘(𝐴𝑁))) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
3422, 32, 33syl2anc 584 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
35 fzfid 13938 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) ∈ Fin)
36 elfznn 13514 . . . . . . 7 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
3736nncnd 12202 . . . . . 6 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ)
3837adantl 481 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ)
3918, 34, 35, 38fprodsplit 15932 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...𝐴)𝑘 = (∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘))
4039oveq1d 7402 . . 3 (𝑁 ∈ (0...𝐴) → (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
4124zcnd 12639 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℂ)
4227zcnd 12639 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℂ)
43 1cnd 11169 . . . . . 6 (𝑁 ∈ (0...𝐴) → 1 ∈ ℂ)
4441, 42, 43subsubd 11561 . . . . 5 (𝑁 ∈ (0...𝐴) → (𝐴 − (𝑁 − 1)) = ((𝐴𝑁) + 1))
4544oveq1d 7402 . . . 4 (𝑁 ∈ (0...𝐴) → ((𝐴 − (𝑁 − 1))...𝐴) = (((𝐴𝑁) + 1)...𝐴))
4645prodeq1d 15886 . . 3 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
4713, 40, 463eqtr4rd 2775 . 2 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
48 fallfacval3 15978 . 2 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘)
49 elfz3nn0 13582 . . . 4 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℕ0)
50 fprodfac 15939 . . . 4 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
5149, 50syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
52 fprodfac 15939 . . . 4 ((𝐴𝑁) ∈ ℕ0 → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5314, 52syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5451, 53oveq12d 7405 . 2 (𝑁 ∈ (0...𝐴) → ((!‘𝐴) / (!‘(𝐴𝑁))) = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
5547, 48, 543eqtr4d 2774 1 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3912  cin 3913  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  !cfa 14238  cprod 15869   FallFac cfallfac 15970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-prod 15870  df-fallfac 15973
This theorem is referenced by:  bcfallfac  16010  fallfacfac  16011  bcled  42166  bcle2d  42167
  Copyright terms: Public domain W3C validator