MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacval4 Structured version   Visualization version   GIF version

Theorem fallfacval4 15753
Description: Represent the falling factorial via factorials when the first argument is a natural. (Contributed by Scott Fenton, 20-Mar-2018.)
Assertion
Ref Expression
fallfacval4 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))

Proof of Theorem fallfacval4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13693 . . . . 5 (𝑁 ∈ (0...𝐴) → (((𝐴𝑁) + 1)...𝐴) ∈ Fin)
2 elfzelz 13256 . . . . . . 7 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℤ)
32zcnd 12427 . . . . . 6 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℂ)
43adantl 482 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)) → 𝑘 ∈ ℂ)
51, 4fprodcl 15662 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘 ∈ ℂ)
6 fzfid 13693 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...(𝐴𝑁)) ∈ Fin)
7 elfznn 13285 . . . . . . 7 (𝑘 ∈ (1...(𝐴𝑁)) → 𝑘 ∈ ℕ)
87adantl 482 . . . . . 6 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℕ)
98nncnd 11989 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℂ)
106, 9fprodcl 15662 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ∈ ℂ)
118nnne0d 12023 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ≠ 0)
126, 9, 11fprodn0 15689 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ≠ 0)
135, 10, 12divcan3d 11756 . . 3 (𝑁 ∈ (0...𝐴) → ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
14 fznn0sub 13288 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℕ0)
1514nn0red 12294 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℝ)
1615ltp1d 11905 . . . . . 6 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) < ((𝐴𝑁) + 1))
17 fzdisj 13283 . . . . . 6 ((𝐴𝑁) < ((𝐴𝑁) + 1) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
1816, 17syl 17 . . . . 5 (𝑁 ∈ (0...𝐴) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
19 nn0p1nn 12272 . . . . . . . 8 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) + 1) ∈ ℕ)
2014, 19syl 17 . . . . . . 7 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ ℕ)
21 nnuz 12621 . . . . . . 7 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2849 . . . . . 6 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ (ℤ‘1))
2314nn0zd 12424 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℤ)
24 elfzel2 13254 . . . . . . 7 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℤ)
25 elfzle1 13259 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → 0 ≤ 𝑁)
2624zred 12426 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℝ)
27 elfzelz 13256 . . . . . . . . . 10 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℤ)
2827zred 12426 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℝ)
2926, 28subge02d 11567 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (0 ≤ 𝑁 ↔ (𝐴𝑁) ≤ 𝐴))
3025, 29mpbid 231 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ≤ 𝐴)
31 eluz2 12588 . . . . . . 7 (𝐴 ∈ (ℤ‘(𝐴𝑁)) ↔ ((𝐴𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴𝑁) ≤ 𝐴))
3223, 24, 30, 31syl3anbrc 1342 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ (ℤ‘(𝐴𝑁)))
33 fzsplit2 13281 . . . . . 6 ((((𝐴𝑁) + 1) ∈ (ℤ‘1) ∧ 𝐴 ∈ (ℤ‘(𝐴𝑁))) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
3422, 32, 33syl2anc 584 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
35 fzfid 13693 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) ∈ Fin)
36 elfznn 13285 . . . . . . 7 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
3736nncnd 11989 . . . . . 6 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ)
3837adantl 482 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ)
3918, 34, 35, 38fprodsplit 15676 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...𝐴)𝑘 = (∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘))
4039oveq1d 7290 . . 3 (𝑁 ∈ (0...𝐴) → (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
4124zcnd 12427 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℂ)
4227zcnd 12427 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℂ)
43 1cnd 10970 . . . . . 6 (𝑁 ∈ (0...𝐴) → 1 ∈ ℂ)
4441, 42, 43subsubd 11360 . . . . 5 (𝑁 ∈ (0...𝐴) → (𝐴 − (𝑁 − 1)) = ((𝐴𝑁) + 1))
4544oveq1d 7290 . . . 4 (𝑁 ∈ (0...𝐴) → ((𝐴 − (𝑁 − 1))...𝐴) = (((𝐴𝑁) + 1)...𝐴))
4645prodeq1d 15631 . . 3 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
4713, 40, 463eqtr4rd 2789 . 2 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
48 fallfacval3 15722 . 2 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘)
49 elfz3nn0 13350 . . . 4 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℕ0)
50 fprodfac 15683 . . . 4 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
5149, 50syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
52 fprodfac 15683 . . . 4 ((𝐴𝑁) ∈ ℕ0 → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5314, 52syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5451, 53oveq12d 7293 . 2 (𝑁 ∈ (0...𝐴) → ((!‘𝐴) / (!‘(𝐴𝑁))) = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
5547, 48, 543eqtr4d 2788 1 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cun 3885  cin 3886  c0 4256   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  !cfa 13987  cprod 15615   FallFac cfallfac 15714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-fallfac 15717
This theorem is referenced by:  bcfallfac  15754  fallfacfac  15755
  Copyright terms: Public domain W3C validator