MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacval4 Structured version   Visualization version   GIF version

Theorem fallfacval4 15450
Description: Represent the falling factorial via factorials when the first argument is a natural. (Contributed by Scott Fenton, 20-Mar-2018.)
Assertion
Ref Expression
fallfacval4 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))

Proof of Theorem fallfacval4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13395 . . . . 5 (𝑁 ∈ (0...𝐴) → (((𝐴𝑁) + 1)...𝐴) ∈ Fin)
2 elfzelz 12961 . . . . . . 7 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℤ)
32zcnd 12132 . . . . . 6 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℂ)
43adantl 485 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)) → 𝑘 ∈ ℂ)
51, 4fprodcl 15359 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘 ∈ ℂ)
6 fzfid 13395 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...(𝐴𝑁)) ∈ Fin)
7 elfznn 12990 . . . . . . 7 (𝑘 ∈ (1...(𝐴𝑁)) → 𝑘 ∈ ℕ)
87adantl 485 . . . . . 6 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℕ)
98nncnd 11695 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℂ)
106, 9fprodcl 15359 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ∈ ℂ)
118nnne0d 11729 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ≠ 0)
126, 9, 11fprodn0 15386 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ≠ 0)
135, 10, 12divcan3d 11464 . . 3 (𝑁 ∈ (0...𝐴) → ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
14 fznn0sub 12993 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℕ0)
1514nn0red 12000 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℝ)
1615ltp1d 11613 . . . . . 6 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) < ((𝐴𝑁) + 1))
17 fzdisj 12988 . . . . . 6 ((𝐴𝑁) < ((𝐴𝑁) + 1) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
1816, 17syl 17 . . . . 5 (𝑁 ∈ (0...𝐴) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
19 nn0p1nn 11978 . . . . . . . 8 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) + 1) ∈ ℕ)
2014, 19syl 17 . . . . . . 7 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ ℕ)
21 nnuz 12326 . . . . . . 7 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2862 . . . . . 6 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ (ℤ‘1))
2314nn0zd 12129 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℤ)
24 elfzel2 12959 . . . . . . 7 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℤ)
25 elfzle1 12964 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → 0 ≤ 𝑁)
2624zred 12131 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℝ)
27 elfzelz 12961 . . . . . . . . . 10 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℤ)
2827zred 12131 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℝ)
2926, 28subge02d 11275 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (0 ≤ 𝑁 ↔ (𝐴𝑁) ≤ 𝐴))
3025, 29mpbid 235 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ≤ 𝐴)
31 eluz2 12293 . . . . . . 7 (𝐴 ∈ (ℤ‘(𝐴𝑁)) ↔ ((𝐴𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴𝑁) ≤ 𝐴))
3223, 24, 30, 31syl3anbrc 1340 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ (ℤ‘(𝐴𝑁)))
33 fzsplit2 12986 . . . . . 6 ((((𝐴𝑁) + 1) ∈ (ℤ‘1) ∧ 𝐴 ∈ (ℤ‘(𝐴𝑁))) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
3422, 32, 33syl2anc 587 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
35 fzfid 13395 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) ∈ Fin)
36 elfznn 12990 . . . . . . 7 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
3736nncnd 11695 . . . . . 6 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ)
3837adantl 485 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ)
3918, 34, 35, 38fprodsplit 15373 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...𝐴)𝑘 = (∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘))
4039oveq1d 7170 . . 3 (𝑁 ∈ (0...𝐴) → (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
4124zcnd 12132 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℂ)
4227zcnd 12132 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℂ)
43 1cnd 10679 . . . . . 6 (𝑁 ∈ (0...𝐴) → 1 ∈ ℂ)
4441, 42, 43subsubd 11068 . . . . 5 (𝑁 ∈ (0...𝐴) → (𝐴 − (𝑁 − 1)) = ((𝐴𝑁) + 1))
4544oveq1d 7170 . . . 4 (𝑁 ∈ (0...𝐴) → ((𝐴 − (𝑁 − 1))...𝐴) = (((𝐴𝑁) + 1)...𝐴))
4645prodeq1d 15328 . . 3 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
4713, 40, 463eqtr4rd 2804 . 2 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
48 fallfacval3 15419 . 2 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘)
49 elfz3nn0 13055 . . . 4 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℕ0)
50 fprodfac 15380 . . . 4 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
5149, 50syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
52 fprodfac 15380 . . . 4 ((𝐴𝑁) ∈ ℕ0 → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5314, 52syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5451, 53oveq12d 7173 . 2 (𝑁 ∈ (0...𝐴) → ((!‘𝐴) / (!‘(𝐴𝑁))) = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
5547, 48, 543eqtr4d 2803 1 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cun 3858  cin 3859  c0 4227   class class class wbr 5035  cfv 6339  (class class class)co 7155  cc 10578  0cc0 10580  1c1 10581   + caddc 10583   · cmul 10585   < clt 10718  cle 10719  cmin 10913   / cdiv 11340  cn 11679  0cn0 11939  cz 12025  cuz 12287  ...cfz 12944  !cfa 13688  cprod 15312   FallFac cfallfac 15411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-z 12026  df-uz 12288  df-rp 12436  df-fz 12945  df-fzo 13088  df-seq 13424  df-exp 13485  df-fac 13689  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-clim 14898  df-prod 15313  df-fallfac 15414
This theorem is referenced by:  bcfallfac  15451  fallfacfac  15452
  Copyright terms: Public domain W3C validator