MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacval4 Structured version   Visualization version   GIF version

Theorem fallfacval4 15400
Description: Represent the falling factorial via factorials when the first argument is a natural. (Contributed by Scott Fenton, 20-Mar-2018.)
Assertion
Ref Expression
fallfacval4 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))

Proof of Theorem fallfacval4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13344 . . . . 5 (𝑁 ∈ (0...𝐴) → (((𝐴𝑁) + 1)...𝐴) ∈ Fin)
2 elfzelz 12911 . . . . . . 7 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℤ)
32zcnd 12091 . . . . . 6 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℂ)
43adantl 484 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)) → 𝑘 ∈ ℂ)
51, 4fprodcl 15309 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘 ∈ ℂ)
6 fzfid 13344 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...(𝐴𝑁)) ∈ Fin)
7 elfznn 12939 . . . . . . 7 (𝑘 ∈ (1...(𝐴𝑁)) → 𝑘 ∈ ℕ)
87adantl 484 . . . . . 6 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℕ)
98nncnd 11657 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℂ)
106, 9fprodcl 15309 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ∈ ℂ)
118nnne0d 11690 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ≠ 0)
126, 9, 11fprodn0 15336 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ≠ 0)
135, 10, 12divcan3d 11424 . . 3 (𝑁 ∈ (0...𝐴) → ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
14 fznn0sub 12942 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℕ0)
1514nn0red 11959 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℝ)
1615ltp1d 11573 . . . . . 6 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) < ((𝐴𝑁) + 1))
17 fzdisj 12937 . . . . . 6 ((𝐴𝑁) < ((𝐴𝑁) + 1) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
1816, 17syl 17 . . . . 5 (𝑁 ∈ (0...𝐴) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
19 nn0p1nn 11939 . . . . . . . 8 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) + 1) ∈ ℕ)
2014, 19syl 17 . . . . . . 7 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ ℕ)
21 nnuz 12284 . . . . . . 7 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2926 . . . . . 6 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ (ℤ‘1))
2314nn0zd 12088 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℤ)
24 elfzel2 12909 . . . . . . 7 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℤ)
25 elfzle1 12913 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → 0 ≤ 𝑁)
2624zred 12090 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℝ)
27 elfzelz 12911 . . . . . . . . . 10 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℤ)
2827zred 12090 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℝ)
2926, 28subge02d 11235 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (0 ≤ 𝑁 ↔ (𝐴𝑁) ≤ 𝐴))
3025, 29mpbid 234 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ≤ 𝐴)
31 eluz2 12252 . . . . . . 7 (𝐴 ∈ (ℤ‘(𝐴𝑁)) ↔ ((𝐴𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴𝑁) ≤ 𝐴))
3223, 24, 30, 31syl3anbrc 1339 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ (ℤ‘(𝐴𝑁)))
33 fzsplit2 12935 . . . . . 6 ((((𝐴𝑁) + 1) ∈ (ℤ‘1) ∧ 𝐴 ∈ (ℤ‘(𝐴𝑁))) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
3422, 32, 33syl2anc 586 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
35 fzfid 13344 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) ∈ Fin)
36 elfznn 12939 . . . . . . 7 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
3736nncnd 11657 . . . . . 6 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ)
3837adantl 484 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ)
3918, 34, 35, 38fprodsplit 15323 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...𝐴)𝑘 = (∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘))
4039oveq1d 7174 . . 3 (𝑁 ∈ (0...𝐴) → (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
4124zcnd 12091 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℂ)
4227zcnd 12091 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℂ)
43 1cnd 10639 . . . . . 6 (𝑁 ∈ (0...𝐴) → 1 ∈ ℂ)
4441, 42, 43subsubd 11028 . . . . 5 (𝑁 ∈ (0...𝐴) → (𝐴 − (𝑁 − 1)) = ((𝐴𝑁) + 1))
4544oveq1d 7174 . . . 4 (𝑁 ∈ (0...𝐴) → ((𝐴 − (𝑁 − 1))...𝐴) = (((𝐴𝑁) + 1)...𝐴))
4645prodeq1d 15278 . . 3 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
4713, 40, 463eqtr4rd 2870 . 2 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
48 fallfacval3 15369 . 2 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘)
49 elfz3nn0 13004 . . . 4 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℕ0)
50 fprodfac 15330 . . . 4 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
5149, 50syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
52 fprodfac 15330 . . . 4 ((𝐴𝑁) ∈ ℕ0 → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5314, 52syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5451, 53oveq12d 7177 . 2 (𝑁 ∈ (0...𝐴) → ((!‘𝐴) / (!‘(𝐴𝑁))) = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
5547, 48, 543eqtr4d 2869 1 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  cun 3937  cin 3938  c0 4294   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  !cfa 13636  cprod 15262   FallFac cfallfac 15361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-prod 15263  df-fallfac 15364
This theorem is referenced by:  bcfallfac  15401  fallfacfac  15402
  Copyright terms: Public domain W3C validator