MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacval4 Structured version   Visualization version   GIF version

Theorem fallfacval4 16091
Description: Represent the falling factorial via factorials when the first argument is a natural. (Contributed by Scott Fenton, 20-Mar-2018.)
Assertion
Ref Expression
fallfacval4 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))

Proof of Theorem fallfacval4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 14024 . . . . 5 (𝑁 ∈ (0...𝐴) → (((𝐴𝑁) + 1)...𝐴) ∈ Fin)
2 elfzelz 13584 . . . . . . 7 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℤ)
32zcnd 12748 . . . . . 6 (𝑘 ∈ (((𝐴𝑁) + 1)...𝐴) → 𝑘 ∈ ℂ)
43adantl 481 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)) → 𝑘 ∈ ℂ)
51, 4fprodcl 16000 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘 ∈ ℂ)
6 fzfid 14024 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...(𝐴𝑁)) ∈ Fin)
7 elfznn 13613 . . . . . . 7 (𝑘 ∈ (1...(𝐴𝑁)) → 𝑘 ∈ ℕ)
87adantl 481 . . . . . 6 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℕ)
98nncnd 12309 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ∈ ℂ)
106, 9fprodcl 16000 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ∈ ℂ)
118nnne0d 12343 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...(𝐴𝑁))) → 𝑘 ≠ 0)
126, 9, 11fprodn0 16027 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...(𝐴𝑁))𝑘 ≠ 0)
135, 10, 12divcan3d 12075 . . 3 (𝑁 ∈ (0...𝐴) → ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
14 fznn0sub 13616 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℕ0)
1514nn0red 12614 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℝ)
1615ltp1d 12225 . . . . . 6 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) < ((𝐴𝑁) + 1))
17 fzdisj 13611 . . . . . 6 ((𝐴𝑁) < ((𝐴𝑁) + 1) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
1816, 17syl 17 . . . . 5 (𝑁 ∈ (0...𝐴) → ((1...(𝐴𝑁)) ∩ (((𝐴𝑁) + 1)...𝐴)) = ∅)
19 nn0p1nn 12592 . . . . . . . 8 ((𝐴𝑁) ∈ ℕ0 → ((𝐴𝑁) + 1) ∈ ℕ)
2014, 19syl 17 . . . . . . 7 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ ℕ)
21 nnuz 12946 . . . . . . 7 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2854 . . . . . 6 (𝑁 ∈ (0...𝐴) → ((𝐴𝑁) + 1) ∈ (ℤ‘1))
2314nn0zd 12665 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ∈ ℤ)
24 elfzel2 13582 . . . . . . 7 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℤ)
25 elfzle1 13587 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → 0 ≤ 𝑁)
2624zred 12747 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℝ)
27 elfzelz 13584 . . . . . . . . . 10 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℤ)
2827zred 12747 . . . . . . . . 9 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℝ)
2926, 28subge02d 11882 . . . . . . . 8 (𝑁 ∈ (0...𝐴) → (0 ≤ 𝑁 ↔ (𝐴𝑁) ≤ 𝐴))
3025, 29mpbid 232 . . . . . . 7 (𝑁 ∈ (0...𝐴) → (𝐴𝑁) ≤ 𝐴)
31 eluz2 12909 . . . . . . 7 (𝐴 ∈ (ℤ‘(𝐴𝑁)) ↔ ((𝐴𝑁) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴𝑁) ≤ 𝐴))
3223, 24, 30, 31syl3anbrc 1343 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ (ℤ‘(𝐴𝑁)))
33 fzsplit2 13609 . . . . . 6 ((((𝐴𝑁) + 1) ∈ (ℤ‘1) ∧ 𝐴 ∈ (ℤ‘(𝐴𝑁))) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
3422, 32, 33syl2anc 583 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) = ((1...(𝐴𝑁)) ∪ (((𝐴𝑁) + 1)...𝐴)))
35 fzfid 14024 . . . . 5 (𝑁 ∈ (0...𝐴) → (1...𝐴) ∈ Fin)
36 elfznn 13613 . . . . . . 7 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
3736nncnd 12309 . . . . . 6 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ)
3837adantl 481 . . . . 5 ((𝑁 ∈ (0...𝐴) ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ)
3918, 34, 35, 38fprodsplit 16014 . . . 4 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ (1...𝐴)𝑘 = (∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘))
4039oveq1d 7463 . . 3 (𝑁 ∈ (0...𝐴) → (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘) = ((∏𝑘 ∈ (1...(𝐴𝑁))𝑘 · ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘) / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
4124zcnd 12748 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℂ)
4227zcnd 12748 . . . . . 6 (𝑁 ∈ (0...𝐴) → 𝑁 ∈ ℂ)
43 1cnd 11285 . . . . . 6 (𝑁 ∈ (0...𝐴) → 1 ∈ ℂ)
4441, 42, 43subsubd 11675 . . . . 5 (𝑁 ∈ (0...𝐴) → (𝐴 − (𝑁 − 1)) = ((𝐴𝑁) + 1))
4544oveq1d 7463 . . . 4 (𝑁 ∈ (0...𝐴) → ((𝐴 − (𝑁 − 1))...𝐴) = (((𝐴𝑁) + 1)...𝐴))
4645prodeq1d 15968 . . 3 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = ∏𝑘 ∈ (((𝐴𝑁) + 1)...𝐴)𝑘)
4713, 40, 463eqtr4rd 2791 . 2 (𝑁 ∈ (0...𝐴) → ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘 = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
48 fallfacval3 16060 . 2 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ∏𝑘 ∈ ((𝐴 − (𝑁 − 1))...𝐴)𝑘)
49 elfz3nn0 13678 . . . 4 (𝑁 ∈ (0...𝐴) → 𝐴 ∈ ℕ0)
50 fprodfac 16021 . . . 4 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
5149, 50syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
52 fprodfac 16021 . . . 4 ((𝐴𝑁) ∈ ℕ0 → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5314, 52syl 17 . . 3 (𝑁 ∈ (0...𝐴) → (!‘(𝐴𝑁)) = ∏𝑘 ∈ (1...(𝐴𝑁))𝑘)
5451, 53oveq12d 7466 . 2 (𝑁 ∈ (0...𝐴) → ((!‘𝐴) / (!‘(𝐴𝑁))) = (∏𝑘 ∈ (1...𝐴)𝑘 / ∏𝑘 ∈ (1...(𝐴𝑁))𝑘))
5547, 48, 543eqtr4d 2790 1 (𝑁 ∈ (0...𝐴) → (𝐴 FallFac 𝑁) = ((!‘𝐴) / (!‘(𝐴𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  cin 3975  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  !cfa 14322  cprod 15951   FallFac cfallfac 16052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-fac 14323  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952  df-fallfac 16055
This theorem is referenced by:  bcfallfac  16092  fallfacfac  16093  bcled  42135  bcle2d  42136
  Copyright terms: Public domain W3C validator