MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodp1 Structured version   Visualization version   GIF version

Theorem fprodp1 15321
Description: Multiply in the last term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017.)
Hypotheses
Ref Expression
fprodp1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprodp1.2 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
fprodp1.3 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
Assertion
Ref Expression
fprodp1 (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · 𝐵))
Distinct variable groups:   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodp1
StepHypRef Expression
1 fprodp1.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 peano2uz 12296 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
31, 2syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
4 fprodp1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
5 fprodp1.3 . . 3 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
63, 4, 5fprodm1 15319 . 2 (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...((𝑁 + 1) − 1))𝐴 · 𝐵))
7 eluzelz 12248 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
81, 7syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
98zcnd 12083 . . . . . 6 (𝜑𝑁 ∈ ℂ)
10 1cnd 10630 . . . . . 6 (𝜑 → 1 ∈ ℂ)
119, 10pncand 10992 . . . . 5 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
1211oveq2d 7162 . . . 4 (𝜑 → (𝑀...((𝑁 + 1) − 1)) = (𝑀...𝑁))
1312prodeq1d 15273 . . 3 (𝜑 → ∏𝑘 ∈ (𝑀...((𝑁 + 1) − 1))𝐴 = ∏𝑘 ∈ (𝑀...𝑁)𝐴)
1413oveq1d 7161 . 2 (𝜑 → (∏𝑘 ∈ (𝑀...((𝑁 + 1) − 1))𝐴 · 𝐵) = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · 𝐵))
156, 14eqtrd 2859 1 (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cfv 6344  (class class class)co 7146  cc 10529  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864  cz 11976  cuz 12238  ...cfz 12892  cprod 15257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8899  df-oi 8967  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-z 11977  df-uz 12239  df-rp 12385  df-fz 12893  df-fzo 13036  df-seq 13372  df-exp 13433  df-hash 13694  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-clim 14843  df-prod 15258
This theorem is referenced by:  fprodp1s  15323  fprodefsum  15446  fmtnorec2lem  43925
  Copyright terms: Public domain W3C validator