Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranpropd Structured version   Visualization version   GIF version

Theorem ranpropd 49598
Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same right Kan extensions. (Contributed by Zhi Wang, 21-Nov-2025.)
Hypotheses
Ref Expression
lanpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
lanpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
lanpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
lanpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
lanpropd.5 (𝜑 → (Homf𝐸) = (Homf𝐹))
lanpropd.6 (𝜑 → (compf𝐸) = (compf𝐹))
lanpropd.a (𝜑𝐴𝑉)
lanpropd.b (𝜑𝐵𝑉)
lanpropd.c (𝜑𝐶𝑉)
lanpropd.d (𝜑𝐷𝑉)
lanpropd.e (𝜑𝐸𝑉)
lanpropd.f (𝜑𝐹𝑉)
Assertion
Ref Expression
ranpropd (𝜑 → (⟨𝐴, 𝐶⟩ Ran 𝐸) = (⟨𝐵, 𝐷⟩ Ran 𝐹))

Proof of Theorem ranpropd
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lanpropd.1 . . . 4 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 lanpropd.2 . . . 4 (𝜑 → (compf𝐴) = (compf𝐵))
3 lanpropd.3 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 lanpropd.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
5 lanpropd.a . . . 4 (𝜑𝐴𝑉)
6 lanpropd.b . . . 4 (𝜑𝐵𝑉)
7 lanpropd.c . . . 4 (𝜑𝐶𝑉)
8 lanpropd.d . . . 4 (𝜑𝐷𝑉)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17844 . . 3 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
10 lanpropd.5 . . . . 5 (𝜑 → (Homf𝐸) = (Homf𝐹))
11 lanpropd.6 . . . . 5 (𝜑 → (compf𝐸) = (compf𝐹))
12 lanpropd.e . . . . 5 (𝜑𝐸𝑉)
13 lanpropd.f . . . . 5 (𝜑𝐹𝑉)
141, 2, 10, 11, 5, 6, 12, 13funcpropd 17844 . . . 4 (𝜑 → (𝐴 Func 𝐸) = (𝐵 Func 𝐹))
1514adantr 480 . . 3 ((𝜑𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐸) = (𝐵 Func 𝐹))
163adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf𝐶) = (Homf𝐷))
174adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (compf𝐶) = (compf𝐷))
1810adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf𝐸) = (Homf𝐹))
1911adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (compf𝐸) = (compf𝐹))
20 funcrcl 17805 . . . . . . . . 9 (𝑓 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
2120ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
2221simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐶 ∈ Cat)
238adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐷𝑉)
2416, 17, 22, 23catpropd 17650 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2522, 24mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐷 ∈ Cat)
26 funcrcl 17805 . . . . . . . . 9 (𝑥 ∈ (𝐴 Func 𝐸) → (𝐴 ∈ Cat ∧ 𝐸 ∈ Cat))
2726ad2antll 729 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ∧ 𝐸 ∈ Cat))
2827simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐸 ∈ Cat)
2913adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐹𝑉)
3018, 19, 28, 29catpropd 17650 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐸 ∈ Cat ↔ 𝐹 ∈ Cat))
3128, 30mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐹 ∈ Cat)
3216, 17, 18, 19, 22, 25, 28, 31fucpropd 17922 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐶 FuncCat 𝐸) = (𝐷 FuncCat 𝐹))
3332fveq2d 6844 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (oppCat‘(𝐶 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐹)))
341adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf𝐴) = (Homf𝐵))
352adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (compf𝐴) = (compf𝐵))
3621simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐴 ∈ Cat)
376adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐵𝑉)
3834, 35, 36, 37catpropd 17650 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat))
3936, 38mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐵 ∈ Cat)
4034, 35, 18, 19, 36, 39, 28, 31fucpropd 17922 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 FuncCat 𝐸) = (𝐵 FuncCat 𝐹))
4140fveq2d 6844 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (oppCat‘(𝐴 FuncCat 𝐸)) = (oppCat‘(𝐵 FuncCat 𝐹)))
4233, 41oveq12d 7387 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → ((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸))) = ((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹))))
43 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝑓 ∈ (𝐴 Func 𝐶))
4416, 17, 18, 19, 22, 25, 28, 31, 43prcofpropd 49361 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (⟨𝐶, 𝐸⟩ −∘F 𝑓) = (⟨𝐷, 𝐹⟩ −∘F 𝑓))
4544fveq2d 6844 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → ( oppFunc ‘(⟨𝐶, 𝐸⟩ −∘F 𝑓)) = ( oppFunc ‘(⟨𝐷, 𝐹⟩ −∘F 𝑓)))
46 eqidd 2730 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝑥 = 𝑥)
4742, 45, 46oveq123d 7390 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (( oppFunc ‘(⟨𝐶, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸)))𝑥) = (( oppFunc ‘(⟨𝐷, 𝐹⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))𝑥))
489, 15, 47mpoeq123dva 7443 . 2 (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑥 ∈ (𝐴 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐶, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸)))𝑥)) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑥 ∈ (𝐵 Func 𝐹) ↦ (( oppFunc ‘(⟨𝐷, 𝐹⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))𝑥)))
49 eqid 2729 . . 3 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
50 eqid 2729 . . 3 (𝐴 FuncCat 𝐸) = (𝐴 FuncCat 𝐸)
51 eqid 2729 . . 3 (oppCat‘(𝐶 FuncCat 𝐸)) = (oppCat‘(𝐶 FuncCat 𝐸))
52 eqid 2729 . . 3 (oppCat‘(𝐴 FuncCat 𝐸)) = (oppCat‘(𝐴 FuncCat 𝐸))
5349, 50, 5, 7, 12, 51, 52ranfval 49596 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ Ran 𝐸) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑥 ∈ (𝐴 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐶, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸)))𝑥)))
54 eqid 2729 . . 3 (𝐷 FuncCat 𝐹) = (𝐷 FuncCat 𝐹)
55 eqid 2729 . . 3 (𝐵 FuncCat 𝐹) = (𝐵 FuncCat 𝐹)
56 eqid 2729 . . 3 (oppCat‘(𝐷 FuncCat 𝐹)) = (oppCat‘(𝐷 FuncCat 𝐹))
57 eqid 2729 . . 3 (oppCat‘(𝐵 FuncCat 𝐹)) = (oppCat‘(𝐵 FuncCat 𝐹))
5854, 55, 6, 8, 13, 56, 57ranfval 49596 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ Ran 𝐹) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑥 ∈ (𝐵 Func 𝐹) ↦ (( oppFunc ‘(⟨𝐷, 𝐹⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))𝑥)))
5948, 53, 583eqtr4d 2774 1 (𝜑 → (⟨𝐴, 𝐶⟩ Ran 𝐸) = (⟨𝐵, 𝐷⟩ Ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4591  cfv 6499  (class class class)co 7369  cmpo 7371  Catccat 17605  Homf chomf 17607  compfccomf 17608  oppCatcoppc 17652   Func cfunc 17796   FuncCat cfuc 17887   oppFunc coppf 49104   UP cup 49155   −∘F cprcof 49355   Ran cran 49588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-homf 17611  df-comf 17612  df-func 17800  df-nat 17888  df-fuc 17889  df-prcof 49356  df-ran 49590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator