Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ranpropd Structured version   Visualization version   GIF version

Theorem ranpropd 49727
Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same right Kan extensions. (Contributed by Zhi Wang, 21-Nov-2025.)
Hypotheses
Ref Expression
lanpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
lanpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
lanpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
lanpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
lanpropd.5 (𝜑 → (Homf𝐸) = (Homf𝐹))
lanpropd.6 (𝜑 → (compf𝐸) = (compf𝐹))
lanpropd.a (𝜑𝐴𝑉)
lanpropd.b (𝜑𝐵𝑉)
lanpropd.c (𝜑𝐶𝑉)
lanpropd.d (𝜑𝐷𝑉)
lanpropd.e (𝜑𝐸𝑉)
lanpropd.f (𝜑𝐹𝑉)
Assertion
Ref Expression
ranpropd (𝜑 → (⟨𝐴, 𝐶⟩ Ran 𝐸) = (⟨𝐵, 𝐷⟩ Ran 𝐹))

Proof of Theorem ranpropd
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lanpropd.1 . . . 4 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 lanpropd.2 . . . 4 (𝜑 → (compf𝐴) = (compf𝐵))
3 lanpropd.3 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 lanpropd.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
5 lanpropd.a . . . 4 (𝜑𝐴𝑉)
6 lanpropd.b . . . 4 (𝜑𝐵𝑉)
7 lanpropd.c . . . 4 (𝜑𝐶𝑉)
8 lanpropd.d . . . 4 (𝜑𝐷𝑉)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17809 . . 3 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
10 lanpropd.5 . . . . 5 (𝜑 → (Homf𝐸) = (Homf𝐹))
11 lanpropd.6 . . . . 5 (𝜑 → (compf𝐸) = (compf𝐹))
12 lanpropd.e . . . . 5 (𝜑𝐸𝑉)
13 lanpropd.f . . . . 5 (𝜑𝐹𝑉)
141, 2, 10, 11, 5, 6, 12, 13funcpropd 17809 . . . 4 (𝜑 → (𝐴 Func 𝐸) = (𝐵 Func 𝐹))
1514adantr 480 . . 3 ((𝜑𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐸) = (𝐵 Func 𝐹))
163adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf𝐶) = (Homf𝐷))
174adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (compf𝐶) = (compf𝐷))
1810adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf𝐸) = (Homf𝐹))
1911adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (compf𝐸) = (compf𝐹))
20 funcrcl 17770 . . . . . . . . 9 (𝑓 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
2120ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
2221simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐶 ∈ Cat)
238adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐷𝑉)
2416, 17, 22, 23catpropd 17615 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2522, 24mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐷 ∈ Cat)
26 funcrcl 17770 . . . . . . . . 9 (𝑥 ∈ (𝐴 Func 𝐸) → (𝐴 ∈ Cat ∧ 𝐸 ∈ Cat))
2726ad2antll 729 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ∧ 𝐸 ∈ Cat))
2827simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐸 ∈ Cat)
2913adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐹𝑉)
3018, 19, 28, 29catpropd 17615 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐸 ∈ Cat ↔ 𝐹 ∈ Cat))
3128, 30mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐹 ∈ Cat)
3216, 17, 18, 19, 22, 25, 28, 31fucpropd 17887 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐶 FuncCat 𝐸) = (𝐷 FuncCat 𝐹))
3332fveq2d 6826 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (oppCat‘(𝐶 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐹)))
341adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf𝐴) = (Homf𝐵))
352adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (compf𝐴) = (compf𝐵))
3621simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐴 ∈ Cat)
376adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐵𝑉)
3834, 35, 36, 37catpropd 17615 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat))
3936, 38mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐵 ∈ Cat)
4034, 35, 18, 19, 36, 39, 28, 31fucpropd 17887 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 FuncCat 𝐸) = (𝐵 FuncCat 𝐹))
4140fveq2d 6826 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (oppCat‘(𝐴 FuncCat 𝐸)) = (oppCat‘(𝐵 FuncCat 𝐹)))
4233, 41oveq12d 7364 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → ((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸))) = ((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹))))
43 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝑓 ∈ (𝐴 Func 𝐶))
4416, 17, 18, 19, 22, 25, 28, 31, 43prcofpropd 49490 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (⟨𝐶, 𝐸⟩ −∘F 𝑓) = (⟨𝐷, 𝐹⟩ −∘F 𝑓))
4544fveq2d 6826 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → ( oppFunc ‘(⟨𝐶, 𝐸⟩ −∘F 𝑓)) = ( oppFunc ‘(⟨𝐷, 𝐹⟩ −∘F 𝑓)))
46 eqidd 2732 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝑥 = 𝑥)
4742, 45, 46oveq123d 7367 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (( oppFunc ‘(⟨𝐶, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸)))𝑥) = (( oppFunc ‘(⟨𝐷, 𝐹⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))𝑥))
489, 15, 47mpoeq123dva 7420 . 2 (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑥 ∈ (𝐴 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐶, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸)))𝑥)) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑥 ∈ (𝐵 Func 𝐹) ↦ (( oppFunc ‘(⟨𝐷, 𝐹⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))𝑥)))
49 eqid 2731 . . 3 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
50 eqid 2731 . . 3 (𝐴 FuncCat 𝐸) = (𝐴 FuncCat 𝐸)
51 eqid 2731 . . 3 (oppCat‘(𝐶 FuncCat 𝐸)) = (oppCat‘(𝐶 FuncCat 𝐸))
52 eqid 2731 . . 3 (oppCat‘(𝐴 FuncCat 𝐸)) = (oppCat‘(𝐴 FuncCat 𝐸))
5349, 50, 5, 7, 12, 51, 52ranfval 49725 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ Ran 𝐸) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑥 ∈ (𝐴 Func 𝐸) ↦ (( oppFunc ‘(⟨𝐶, 𝐸⟩ −∘F 𝑓))((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸)))𝑥)))
54 eqid 2731 . . 3 (𝐷 FuncCat 𝐹) = (𝐷 FuncCat 𝐹)
55 eqid 2731 . . 3 (𝐵 FuncCat 𝐹) = (𝐵 FuncCat 𝐹)
56 eqid 2731 . . 3 (oppCat‘(𝐷 FuncCat 𝐹)) = (oppCat‘(𝐷 FuncCat 𝐹))
57 eqid 2731 . . 3 (oppCat‘(𝐵 FuncCat 𝐹)) = (oppCat‘(𝐵 FuncCat 𝐹))
5854, 55, 6, 8, 13, 56, 57ranfval 49725 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ Ran 𝐹) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑥 ∈ (𝐵 Func 𝐹) ↦ (( oppFunc ‘(⟨𝐷, 𝐹⟩ −∘F 𝑓))((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))𝑥)))
5948, 53, 583eqtr4d 2776 1 (𝜑 → (⟨𝐴, 𝐶⟩ Ran 𝐸) = (⟨𝐵, 𝐷⟩ Ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4579  cfv 6481  (class class class)co 7346  cmpo 7348  Catccat 17570  Homf chomf 17572  compfccomf 17573  oppCatcoppc 17617   Func cfunc 17761   FuncCat cfuc 17852   oppFunc coppf 49233   UP cup 49284   −∘F cprcof 49484   Ran cran 49717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17574  df-cid 17575  df-homf 17576  df-comf 17577  df-func 17765  df-nat 17853  df-fuc 17854  df-prcof 49485  df-ran 49719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator