| Step | Hyp | Ref
| Expression |
| 1 | | lanpropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 2 | | lanpropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
| 3 | | lanpropd.3 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 4 | | lanpropd.4 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 5 | | lanpropd.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 6 | | lanpropd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 7 | | lanpropd.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 8 | | lanpropd.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | funcpropd 17870 |
. . 3
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 10 | | lanpropd.5 |
. . . . 5
⊢ (𝜑 → (Homf
‘𝐸) =
(Homf ‘𝐹)) |
| 11 | | lanpropd.6 |
. . . . 5
⊢ (𝜑 →
(compf‘𝐸) = (compf‘𝐹)) |
| 12 | | lanpropd.e |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 13 | | lanpropd.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| 14 | 1, 2, 10, 11, 5, 6, 12, 13 | funcpropd 17870 |
. . . 4
⊢ (𝜑 → (𝐴 Func 𝐸) = (𝐵 Func 𝐹)) |
| 15 | 14 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐸) = (𝐵 Func 𝐹)) |
| 16 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 17 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) →
(compf‘𝐶) = (compf‘𝐷)) |
| 18 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf
‘𝐸) =
(Homf ‘𝐹)) |
| 19 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) →
(compf‘𝐸) = (compf‘𝐹)) |
| 20 | | funcrcl 17831 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat)) |
| 21 | 20 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat)) |
| 22 | 21 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐶 ∈ Cat) |
| 23 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐷 ∈ 𝑉) |
| 24 | 16, 17, 22, 23 | catpropd 17676 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) |
| 25 | 22, 24 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐷 ∈ Cat) |
| 26 | | funcrcl 17831 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 Func 𝐸) → (𝐴 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 27 | 26 | ad2antll 729 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| 28 | 27 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐸 ∈ Cat) |
| 29 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐹 ∈ 𝑉) |
| 30 | 18, 19, 28, 29 | catpropd 17676 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐸 ∈ Cat ↔ 𝐹 ∈ Cat)) |
| 31 | 28, 30 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐹 ∈ Cat) |
| 32 | 16, 17, 18, 19, 22, 25, 28, 31 | fucpropd 17948 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐶 FuncCat 𝐸) = (𝐷 FuncCat 𝐹)) |
| 33 | 32 | fveq2d 6864 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (oppCat‘(𝐶 FuncCat 𝐸)) = (oppCat‘(𝐷 FuncCat 𝐹))) |
| 34 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 35 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) →
(compf‘𝐴) = (compf‘𝐵)) |
| 36 | 21 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐴 ∈ Cat) |
| 37 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐵 ∈ 𝑉) |
| 38 | 34, 35, 36, 37 | catpropd 17676 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat)) |
| 39 | 36, 38 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐵 ∈ Cat) |
| 40 | 34, 35, 18, 19, 36, 39, 28, 31 | fucpropd 17948 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 FuncCat 𝐸) = (𝐵 FuncCat 𝐹)) |
| 41 | 40 | fveq2d 6864 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (oppCat‘(𝐴 FuncCat 𝐸)) = (oppCat‘(𝐵 FuncCat 𝐹))) |
| 42 | 33, 41 | oveq12d 7407 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → ((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸))) = ((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))) |
| 43 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝑓 ∈ (𝐴 Func 𝐶)) |
| 44 | 16, 17, 18, 19, 22, 25, 28, 31, 43 | prcofpropd 49358 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (〈𝐶, 𝐸〉 −∘F
𝑓) = (〈𝐷, 𝐹〉 −∘F
𝑓)) |
| 45 | 44 | fveq2d 6864 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → ( oppFunc ‘(〈𝐶, 𝐸〉 −∘F
𝑓)) = ( oppFunc
‘(〈𝐷, 𝐹〉
−∘F 𝑓))) |
| 46 | | eqidd 2731 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝑥 = 𝑥) |
| 47 | 42, 45, 46 | oveq123d 7410 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (( oppFunc ‘(〈𝐶, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸)))𝑥) = (( oppFunc ‘(〈𝐷, 𝐹〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))𝑥)) |
| 48 | 9, 15, 47 | mpoeq123dva 7465 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑥 ∈ (𝐴 Func 𝐸) ↦ (( oppFunc ‘(〈𝐶, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸)))𝑥)) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑥 ∈ (𝐵 Func 𝐹) ↦ (( oppFunc ‘(〈𝐷, 𝐹〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))𝑥))) |
| 49 | | eqid 2730 |
. . 3
⊢ (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸) |
| 50 | | eqid 2730 |
. . 3
⊢ (𝐴 FuncCat 𝐸) = (𝐴 FuncCat 𝐸) |
| 51 | | eqid 2730 |
. . 3
⊢
(oppCat‘(𝐶
FuncCat 𝐸)) =
(oppCat‘(𝐶 FuncCat
𝐸)) |
| 52 | | eqid 2730 |
. . 3
⊢
(oppCat‘(𝐴
FuncCat 𝐸)) =
(oppCat‘(𝐴 FuncCat
𝐸)) |
| 53 | 49, 50, 5, 7, 12, 51, 52 | ranfval 49593 |
. 2
⊢ (𝜑 → (〈𝐴, 𝐶〉 Ran 𝐸) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑥 ∈ (𝐴 Func 𝐸) ↦ (( oppFunc ‘(〈𝐶, 𝐸〉 −∘F
𝑓))((oppCat‘(𝐶 FuncCat 𝐸)) UP (oppCat‘(𝐴 FuncCat 𝐸)))𝑥))) |
| 54 | | eqid 2730 |
. . 3
⊢ (𝐷 FuncCat 𝐹) = (𝐷 FuncCat 𝐹) |
| 55 | | eqid 2730 |
. . 3
⊢ (𝐵 FuncCat 𝐹) = (𝐵 FuncCat 𝐹) |
| 56 | | eqid 2730 |
. . 3
⊢
(oppCat‘(𝐷
FuncCat 𝐹)) =
(oppCat‘(𝐷 FuncCat
𝐹)) |
| 57 | | eqid 2730 |
. . 3
⊢
(oppCat‘(𝐵
FuncCat 𝐹)) =
(oppCat‘(𝐵 FuncCat
𝐹)) |
| 58 | 54, 55, 6, 8, 13, 56, 57 | ranfval 49593 |
. 2
⊢ (𝜑 → (〈𝐵, 𝐷〉 Ran 𝐹) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑥 ∈ (𝐵 Func 𝐹) ↦ (( oppFunc ‘(〈𝐷, 𝐹〉 −∘F
𝑓))((oppCat‘(𝐷 FuncCat 𝐹)) UP (oppCat‘(𝐵 FuncCat 𝐹)))𝑥))) |
| 59 | 48, 53, 58 | 3eqtr4d 2775 |
1
⊢ (𝜑 → (〈𝐴, 𝐶〉 Ran 𝐸) = (〈𝐵, 𝐷〉 Ran 𝐹)) |