![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climi0 | Structured version Visualization version GIF version |
Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climi.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climi.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climi.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
climi.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
climi0.5 | ⊢ (𝜑 → 𝐹 ⇝ 0) |
Ref | Expression |
---|---|
climi0 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climi.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climi.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climi.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
4 | climi.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
5 | climi0.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 0) | |
6 | 1, 2, 3, 4, 5 | climi 15458 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶)) |
7 | subid1 11484 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
8 | 7 | fveq2d 6894 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
9 | 8 | breq1d 5157 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝐶 ↔ (abs‘𝐵) < 𝐶)) |
10 | 9 | biimpa 475 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → (abs‘𝐵) < 𝐶) |
11 | 10 | ralimi 3081 | . . 3 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
12 | 11 | reximi 3082 | . 2 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
13 | 6, 12 | syl 17 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 class class class wbr 5147 ‘cfv 6542 (class class class)co 7411 ℂcc 11110 0cc0 11112 < clt 11252 − cmin 11448 ℤcz 12562 ℤ≥cuz 12826 ℝ+crp 12978 abscabs 15185 ⇝ cli 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-z 12563 df-uz 12827 df-clim 15436 |
This theorem is referenced by: mertenslem2 15835 iscmet3lem3 25038 radcnvlem1 26161 abelthlem5 26183 abelthlem8 26187 sinccvg 34956 |
Copyright terms: Public domain | W3C validator |