MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climi0 Structured version   Visualization version   GIF version

Theorem climi0 14861
Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climi.1 𝑍 = (ℤ𝑀)
climi.2 (𝜑𝑀 ∈ ℤ)
climi.3 (𝜑𝐶 ∈ ℝ+)
climi.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
climi0.5 (𝜑𝐹 ⇝ 0)
Assertion
Ref Expression
climi0 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
Distinct variable groups:   𝑗,𝑘,𝐶   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝑀
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem climi0
StepHypRef Expression
1 climi.1 . . 3 𝑍 = (ℤ𝑀)
2 climi.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climi.3 . . 3 (𝜑𝐶 ∈ ℝ+)
4 climi.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
5 climi0.5 . . 3 (𝜑𝐹 ⇝ 0)
61, 2, 3, 4, 5climi 14859 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶))
7 subid1 10895 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
87fveq2d 6649 . . . . . 6 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
98breq1d 5040 . . . . 5 (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝐶 ↔ (abs‘𝐵) < 𝐶))
109biimpa 480 . . . 4 ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → (abs‘𝐵) < 𝐶)
1110ralimi 3128 . . 3 (∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∀𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
1211reximi 3206 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
136, 12syl 17 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526   < clt 10664  cmin 10859  cz 11969  cuz 12231  +crp 12377  abscabs 14585  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-z 11970  df-uz 12232  df-clim 14837
This theorem is referenced by:  mertenslem2  15233  iscmet3lem3  23894  radcnvlem1  25008  abelthlem5  25030  abelthlem8  25034  sinccvg  33029
  Copyright terms: Public domain W3C validator