Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climi0 | Structured version Visualization version GIF version |
Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climi.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climi.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climi.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
climi.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
climi0.5 | ⊢ (𝜑 → 𝐹 ⇝ 0) |
Ref | Expression |
---|---|
climi0 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climi.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climi.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climi.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
4 | climi.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
5 | climi0.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 0) | |
6 | 1, 2, 3, 4, 5 | climi 15217 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶)) |
7 | subid1 11241 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
8 | 7 | fveq2d 6775 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
9 | 8 | breq1d 5089 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝐶 ↔ (abs‘𝐵) < 𝐶)) |
10 | 9 | biimpa 477 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → (abs‘𝐵) < 𝐶) |
11 | 10 | ralimi 3089 | . . 3 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
12 | 11 | reximi 3177 | . 2 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
13 | 6, 12 | syl 17 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘𝐵) < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 0cc0 10872 < clt 11010 − cmin 11205 ℤcz 12319 ℤ≥cuz 12581 ℝ+crp 12729 abscabs 14943 ⇝ cli 15191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-z 12320 df-uz 12582 df-clim 15195 |
This theorem is referenced by: mertenslem2 15595 iscmet3lem3 24452 radcnvlem1 25570 abelthlem5 25592 abelthlem8 25596 sinccvg 33627 |
Copyright terms: Public domain | W3C validator |