MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climi0 Structured version   Visualization version   GIF version

Theorem climi0 15421
Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climi.1 𝑍 = (ℤ𝑀)
climi.2 (𝜑𝑀 ∈ ℤ)
climi.3 (𝜑𝐶 ∈ ℝ+)
climi.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
climi0.5 (𝜑𝐹 ⇝ 0)
Assertion
Ref Expression
climi0 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
Distinct variable groups:   𝑗,𝑘,𝐶   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝑀
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem climi0
StepHypRef Expression
1 climi.1 . . 3 𝑍 = (ℤ𝑀)
2 climi.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climi.3 . . 3 (𝜑𝐶 ∈ ℝ+)
4 climi.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
5 climi0.5 . . 3 (𝜑𝐹 ⇝ 0)
61, 2, 3, 4, 5climi 15419 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶))
7 subid1 11388 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
87fveq2d 6832 . . . . . 6 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
98breq1d 5103 . . . . 5 (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝐶 ↔ (abs‘𝐵) < 𝐶))
109biimpa 476 . . . 4 ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → (abs‘𝐵) < 𝐶)
1110ralimi 3070 . . 3 (∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∀𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
1211reximi 3071 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 0)) < 𝐶) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
136, 12syl 17 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘𝐵) < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013   < clt 11153  cmin 11351  cz 12475  cuz 12738  +crp 12892  abscabs 15143  cli 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-z 12476  df-uz 12739  df-clim 15397
This theorem is referenced by:  mertenslem2  15794  iscmet3lem3  25218  radcnvlem1  26350  abelthlem5  26373  abelthlem8  26377  sinccvg  35738
  Copyright terms: Public domain W3C validator