MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idsrngd Structured version   Visualization version   GIF version

Theorem idsrngd 20462
Description: A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019.)
Hypotheses
Ref Expression
idsrngd.k 𝐵 = (Base‘𝑅)
idsrngd.c = (*𝑟𝑅)
idsrngd.r (𝜑𝑅 ∈ CRing)
idsrngd.i ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
Assertion
Ref Expression
idsrngd (𝜑𝑅 ∈ *-Ring)
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝑅   𝜑,𝑥

Proof of Theorem idsrngd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idsrngd.k . . 3 𝐵 = (Base‘𝑅)
21a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
3 eqidd 2733 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
4 eqidd 2733 . 2 (𝜑 → (.r𝑅) = (.r𝑅))
5 idsrngd.c . . 3 = (*𝑟𝑅)
65a1i 11 . 2 (𝜑 = (*𝑟𝑅))
7 idsrngd.r . . 3 (𝜑𝑅 ∈ CRing)
8 crngring 20061 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
97, 8syl 17 . 2 (𝜑𝑅 ∈ Ring)
10 idsrngd.i . . . . . 6 ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
1110ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑥𝐵 ( 𝑥) = 𝑥)
1211adantr 481 . . . 4 ((𝜑𝑎𝐵) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
13 simpr 485 . . . . 5 ((𝜑𝑎𝐵) → 𝑎𝐵)
14 simpr 485 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑥 = 𝑎) → 𝑥 = 𝑎)
1514fveq2d 6892 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑥 = 𝑎) → ( 𝑥) = ( 𝑎))
1615, 14eqeq12d 2748 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑥 = 𝑎) → (( 𝑥) = 𝑥 ↔ ( 𝑎) = 𝑎))
1713, 16rspcdv 3604 . . . 4 ((𝜑𝑎𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( 𝑎) = 𝑎))
1812, 17mpd 15 . . 3 ((𝜑𝑎𝐵) → ( 𝑎) = 𝑎)
1918, 13eqeltrd 2833 . 2 ((𝜑𝑎𝐵) → ( 𝑎) ∈ 𝐵)
2011adantr 481 . . . . 5 ((𝜑𝑏𝐵) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
21203adant2 1131 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
22 ringgrp 20054 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
239, 22syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
24 eqid 2732 . . . . . . 7 (+g𝑅) = (+g𝑅)
251, 24grpcl 18823 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
2623, 25syl3an1 1163 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
27 simpr 485 . . . . . . 7 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(+g𝑅)𝑏)) → 𝑥 = (𝑎(+g𝑅)𝑏))
2827fveq2d 6892 . . . . . 6 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(+g𝑅)𝑏)) → ( 𝑥) = ( ‘(𝑎(+g𝑅)𝑏)))
2928, 27eqeq12d 2748 . . . . 5 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(+g𝑅)𝑏)) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑎(+g𝑅)𝑏)) = (𝑎(+g𝑅)𝑏)))
3026, 29rspcdv 3604 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( ‘(𝑎(+g𝑅)𝑏)) = (𝑎(+g𝑅)𝑏)))
3121, 30mpd 15 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(+g𝑅)𝑏)) = (𝑎(+g𝑅)𝑏))
32183adant3 1132 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → ( 𝑎) = 𝑎)
33 simpr 485 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏𝐵)
34 simpr 485 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑥 = 𝑏) → 𝑥 = 𝑏)
3534fveq2d 6892 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑥 = 𝑏) → ( 𝑥) = ( 𝑏))
3635, 34eqeq12d 2748 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑥 = 𝑏) → (( 𝑥) = 𝑥 ↔ ( 𝑏) = 𝑏))
3733, 36rspcdv 3604 . . . . . 6 ((𝜑𝑏𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( 𝑏) = 𝑏))
3820, 37mpd 15 . . . . 5 ((𝜑𝑏𝐵) → ( 𝑏) = 𝑏)
39383adant2 1131 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → ( 𝑏) = 𝑏)
4032, 39oveq12d 7423 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → (( 𝑎)(+g𝑅)( 𝑏)) = (𝑎(+g𝑅)𝑏))
4131, 40eqtr4d 2775 . 2 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(+g𝑅)𝑏)) = (( 𝑎)(+g𝑅)( 𝑏)))
42 eqid 2732 . . . . 5 (.r𝑅) = (.r𝑅)
431, 42crngcom 20067 . . . 4 ((𝑅 ∈ CRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
447, 43syl3an1 1163 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
451, 42ringcl 20066 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) ∈ 𝐵)
469, 45syl3an1 1163 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) ∈ 𝐵)
47 simpr 485 . . . . . . 7 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(.r𝑅)𝑏)) → 𝑥 = (𝑎(.r𝑅)𝑏))
4847fveq2d 6892 . . . . . 6 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(.r𝑅)𝑏)) → ( 𝑥) = ( ‘(𝑎(.r𝑅)𝑏)))
4948, 47eqeq12d 2748 . . . . 5 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(.r𝑅)𝑏)) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑎(.r𝑅)𝑏)) = (𝑎(.r𝑅)𝑏)))
5046, 49rspcdv 3604 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( ‘(𝑎(.r𝑅)𝑏)) = (𝑎(.r𝑅)𝑏)))
5121, 50mpd 15 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(.r𝑅)𝑏)) = (𝑎(.r𝑅)𝑏))
5239, 32oveq12d 7423 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → (( 𝑏)(.r𝑅)( 𝑎)) = (𝑏(.r𝑅)𝑎))
5344, 51, 523eqtr4d 2782 . 2 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(.r𝑅)𝑏)) = (( 𝑏)(.r𝑅)( 𝑎)))
5418fveq2d 6892 . . 3 ((𝜑𝑎𝐵) → ( ‘( 𝑎)) = ( 𝑎))
5554, 18eqtrd 2772 . 2 ((𝜑𝑎𝐵) → ( ‘( 𝑎)) = 𝑎)
562, 3, 4, 6, 9, 19, 41, 53, 55issrngd 20461 1 (𝜑𝑅 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  *𝑟cstv 17195  Grpcgrp 18815  Ringcrg 20049  CRingccrg 20050  *-Ringcsr 20444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-ghm 19084  df-cmn 19644  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-rnghom 20243  df-staf 20445  df-srng 20446
This theorem is referenced by:  resrng  21165  frlmphl  21327
  Copyright terms: Public domain W3C validator