MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idsrngd Structured version   Visualization version   GIF version

Theorem idsrngd 20702
Description: A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019.)
Hypotheses
Ref Expression
idsrngd.k 𝐵 = (Base‘𝑅)
idsrngd.c = (*𝑟𝑅)
idsrngd.r (𝜑𝑅 ∈ CRing)
idsrngd.i ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
Assertion
Ref Expression
idsrngd (𝜑𝑅 ∈ *-Ring)
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝑅   𝜑,𝑥

Proof of Theorem idsrngd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idsrngd.k . . 3 𝐵 = (Base‘𝑅)
21a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
3 eqidd 2727 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
4 eqidd 2727 . 2 (𝜑 → (.r𝑅) = (.r𝑅))
5 idsrngd.c . . 3 = (*𝑟𝑅)
65a1i 11 . 2 (𝜑 = (*𝑟𝑅))
7 idsrngd.r . . 3 (𝜑𝑅 ∈ CRing)
8 crngring 20147 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
97, 8syl 17 . 2 (𝜑𝑅 ∈ Ring)
10 idsrngd.i . . . . . 6 ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
1110ralrimiva 3140 . . . . 5 (𝜑 → ∀𝑥𝐵 ( 𝑥) = 𝑥)
1211adantr 480 . . . 4 ((𝜑𝑎𝐵) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
13 simpr 484 . . . . 5 ((𝜑𝑎𝐵) → 𝑎𝐵)
14 simpr 484 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑥 = 𝑎) → 𝑥 = 𝑎)
1514fveq2d 6888 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑥 = 𝑎) → ( 𝑥) = ( 𝑎))
1615, 14eqeq12d 2742 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑥 = 𝑎) → (( 𝑥) = 𝑥 ↔ ( 𝑎) = 𝑎))
1713, 16rspcdv 3598 . . . 4 ((𝜑𝑎𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( 𝑎) = 𝑎))
1812, 17mpd 15 . . 3 ((𝜑𝑎𝐵) → ( 𝑎) = 𝑎)
1918, 13eqeltrd 2827 . 2 ((𝜑𝑎𝐵) → ( 𝑎) ∈ 𝐵)
2011adantr 480 . . . . 5 ((𝜑𝑏𝐵) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
21203adant2 1128 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
22 ringgrp 20140 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
239, 22syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
24 eqid 2726 . . . . . . 7 (+g𝑅) = (+g𝑅)
251, 24grpcl 18868 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
2623, 25syl3an1 1160 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
27 simpr 484 . . . . . . 7 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(+g𝑅)𝑏)) → 𝑥 = (𝑎(+g𝑅)𝑏))
2827fveq2d 6888 . . . . . 6 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(+g𝑅)𝑏)) → ( 𝑥) = ( ‘(𝑎(+g𝑅)𝑏)))
2928, 27eqeq12d 2742 . . . . 5 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(+g𝑅)𝑏)) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑎(+g𝑅)𝑏)) = (𝑎(+g𝑅)𝑏)))
3026, 29rspcdv 3598 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( ‘(𝑎(+g𝑅)𝑏)) = (𝑎(+g𝑅)𝑏)))
3121, 30mpd 15 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(+g𝑅)𝑏)) = (𝑎(+g𝑅)𝑏))
32183adant3 1129 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → ( 𝑎) = 𝑎)
33 simpr 484 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏𝐵)
34 simpr 484 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑥 = 𝑏) → 𝑥 = 𝑏)
3534fveq2d 6888 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑥 = 𝑏) → ( 𝑥) = ( 𝑏))
3635, 34eqeq12d 2742 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑥 = 𝑏) → (( 𝑥) = 𝑥 ↔ ( 𝑏) = 𝑏))
3733, 36rspcdv 3598 . . . . . 6 ((𝜑𝑏𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( 𝑏) = 𝑏))
3820, 37mpd 15 . . . . 5 ((𝜑𝑏𝐵) → ( 𝑏) = 𝑏)
39383adant2 1128 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → ( 𝑏) = 𝑏)
4032, 39oveq12d 7422 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → (( 𝑎)(+g𝑅)( 𝑏)) = (𝑎(+g𝑅)𝑏))
4131, 40eqtr4d 2769 . 2 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(+g𝑅)𝑏)) = (( 𝑎)(+g𝑅)( 𝑏)))
42 eqid 2726 . . . . 5 (.r𝑅) = (.r𝑅)
431, 42crngcom 20153 . . . 4 ((𝑅 ∈ CRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
447, 43syl3an1 1160 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
451, 42ringcl 20152 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) ∈ 𝐵)
469, 45syl3an1 1160 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) ∈ 𝐵)
47 simpr 484 . . . . . . 7 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(.r𝑅)𝑏)) → 𝑥 = (𝑎(.r𝑅)𝑏))
4847fveq2d 6888 . . . . . 6 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(.r𝑅)𝑏)) → ( 𝑥) = ( ‘(𝑎(.r𝑅)𝑏)))
4948, 47eqeq12d 2742 . . . . 5 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(.r𝑅)𝑏)) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑎(.r𝑅)𝑏)) = (𝑎(.r𝑅)𝑏)))
5046, 49rspcdv 3598 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( ‘(𝑎(.r𝑅)𝑏)) = (𝑎(.r𝑅)𝑏)))
5121, 50mpd 15 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(.r𝑅)𝑏)) = (𝑎(.r𝑅)𝑏))
5239, 32oveq12d 7422 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → (( 𝑏)(.r𝑅)( 𝑎)) = (𝑏(.r𝑅)𝑎))
5344, 51, 523eqtr4d 2776 . 2 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(.r𝑅)𝑏)) = (( 𝑏)(.r𝑅)( 𝑎)))
5418fveq2d 6888 . . 3 ((𝜑𝑎𝐵) → ( ‘( 𝑎)) = ( 𝑎))
5554, 18eqtrd 2766 . 2 ((𝜑𝑎𝐵) → ( ‘( 𝑎)) = 𝑎)
562, 3, 4, 6, 9, 19, 41, 53, 55issrngd 20701 1 (𝜑𝑅 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3055  cfv 6536  (class class class)co 7404  Basecbs 17150  +gcplusg 17203  .rcmulr 17204  *𝑟cstv 17205  Grpcgrp 18860  Ringcrg 20135  CRingccrg 20136  *-Ringcsr 20684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-tpos 8209  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-plusg 17216  df-mulr 17217  df-0g 17393  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-mhm 18710  df-grp 18863  df-minusg 18864  df-ghm 19136  df-cmn 19699  df-abl 19700  df-mgp 20037  df-rng 20055  df-ur 20084  df-ring 20137  df-cring 20138  df-oppr 20233  df-rhm 20371  df-staf 20685  df-srng 20686
This theorem is referenced by:  resrng  21509  frlmphl  21671
  Copyright terms: Public domain W3C validator