| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcelel | Structured version Visualization version GIF version | ||
| Description: Preimage maps produced by the membership relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
| Ref | Expression |
|---|---|
| dstrvprob.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| dstrvprob.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orvcelel.1 | ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) |
| Ref | Expression |
|---|---|
| orvcelel | ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) ∈ dom 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dstrvprob.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | dstrvprob.2 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | orvcelel.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) | |
| 4 | 1, 2, 3 | orvcelval 34433 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) |
| 5 | 1, 2 | rrvfinvima 34414 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝔅ℝ (◡𝑋 “ 𝑎) ∈ dom 𝑃) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴) | |
| 7 | 6 | imaeq2d 6020 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → (◡𝑋 “ 𝑎) = (◡𝑋 “ 𝐴)) |
| 8 | 7 | eleq1d 2813 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 = 𝐴) → ((◡𝑋 “ 𝑎) ∈ dom 𝑃 ↔ (◡𝑋 “ 𝐴) ∈ dom 𝑃)) |
| 9 | 3, 8 | rspcdv 3577 | . . 3 ⊢ (𝜑 → (∀𝑎 ∈ 𝔅ℝ (◡𝑋 “ 𝑎) ∈ dom 𝑃 → (◡𝑋 “ 𝐴) ∈ dom 𝑃)) |
| 10 | 5, 9 | mpd 15 | . 2 ⊢ (𝜑 → (◡𝑋 “ 𝐴) ∈ dom 𝑃) |
| 11 | 4, 10 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) ∈ dom 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 E cep 5530 ◡ccnv 5630 dom cdm 5631 “ cima 5634 ‘cfv 6499 (class class class)co 7369 𝔅ℝcbrsiga 34144 Probcprb 34371 rRndVarcrrv 34404 ∘RV/𝑐corvc 34420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ioo 13286 df-topgen 17382 df-top 22757 df-bases 22809 df-esum 33991 df-siga 34072 df-sigagen 34102 df-brsiga 34145 df-meas 34159 df-mbfm 34213 df-prob 34372 df-rrv 34405 df-orvc 34421 |
| This theorem is referenced by: dstrvprob 34436 |
| Copyright terms: Public domain | W3C validator |