Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcelel Structured version   Visualization version   GIF version

Theorem orvcelel 34475
Description: Preimage maps produced by the membership relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.)
Hypotheses
Ref Expression
dstrvprob.1 (𝜑𝑃 ∈ Prob)
dstrvprob.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvcelel.1 (𝜑𝐴 ∈ 𝔅)
Assertion
Ref Expression
orvcelel (𝜑 → (𝑋RV/𝑐 E 𝐴) ∈ dom 𝑃)

Proof of Theorem orvcelel
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dstrvprob.1 . . 3 (𝜑𝑃 ∈ Prob)
2 dstrvprob.2 . . 3 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvcelel.1 . . 3 (𝜑𝐴 ∈ 𝔅)
41, 2, 3orvcelval 34474 . 2 (𝜑 → (𝑋RV/𝑐 E 𝐴) = (𝑋𝐴))
51, 2rrvfinvima 34455 . . 3 (𝜑 → ∀𝑎 ∈ 𝔅 (𝑋𝑎) ∈ dom 𝑃)
6 simpr 484 . . . . . 6 ((𝜑𝑎 = 𝐴) → 𝑎 = 𝐴)
76imaeq2d 6004 . . . . 5 ((𝜑𝑎 = 𝐴) → (𝑋𝑎) = (𝑋𝐴))
87eleq1d 2816 . . . 4 ((𝜑𝑎 = 𝐴) → ((𝑋𝑎) ∈ dom 𝑃 ↔ (𝑋𝐴) ∈ dom 𝑃))
93, 8rspcdv 3564 . . 3 (𝜑 → (∀𝑎 ∈ 𝔅 (𝑋𝑎) ∈ dom 𝑃 → (𝑋𝐴) ∈ dom 𝑃))
105, 9mpd 15 . 2 (𝜑 → (𝑋𝐴) ∈ dom 𝑃)
114, 10eqeltrd 2831 1 (𝜑 → (𝑋RV/𝑐 E 𝐴) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047   E cep 5510  ccnv 5610  dom cdm 5611  cima 5614  cfv 6476  (class class class)co 7341  𝔅cbrsiga 34186  Probcprb 34412  rRndVarcrrv 34445  RV/𝑐corvc 34461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-ioo 13244  df-topgen 17342  df-top 22804  df-bases 22856  df-esum 34033  df-siga 34114  df-sigagen 34144  df-brsiga 34187  df-meas 34201  df-mbfm 34255  df-prob 34413  df-rrv 34446  df-orvc 34462
This theorem is referenced by:  dstrvprob  34477
  Copyright terms: Public domain W3C validator