![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orvcelel | Structured version Visualization version GIF version |
Description: Preimage maps produced by the membership relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
Ref | Expression |
---|---|
dstrvprob.1 | β’ (π β π β Prob) |
dstrvprob.2 | β’ (π β π β (rRndVarβπ)) |
orvcelel.1 | β’ (π β π΄ β π β) |
Ref | Expression |
---|---|
orvcelel | β’ (π β (πβRV/π E π΄) β dom π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstrvprob.1 | . . 3 β’ (π β π β Prob) | |
2 | dstrvprob.2 | . . 3 β’ (π β π β (rRndVarβπ)) | |
3 | orvcelel.1 | . . 3 β’ (π β π΄ β π β) | |
4 | 1, 2, 3 | orvcelval 33753 | . 2 β’ (π β (πβRV/π E π΄) = (β‘π β π΄)) |
5 | 1, 2 | rrvfinvima 33735 | . . 3 β’ (π β βπ β π β (β‘π β π) β dom π) |
6 | simpr 485 | . . . . . 6 β’ ((π β§ π = π΄) β π = π΄) | |
7 | 6 | imaeq2d 6059 | . . . . 5 β’ ((π β§ π = π΄) β (β‘π β π) = (β‘π β π΄)) |
8 | 7 | eleq1d 2818 | . . . 4 β’ ((π β§ π = π΄) β ((β‘π β π) β dom π β (β‘π β π΄) β dom π)) |
9 | 3, 8 | rspcdv 3604 | . . 3 β’ (π β (βπ β π β (β‘π β π) β dom π β (β‘π β π΄) β dom π)) |
10 | 5, 9 | mpd 15 | . 2 β’ (π β (β‘π β π΄) β dom π) |
11 | 4, 10 | eqeltrd 2833 | 1 β’ (π β (πβRV/π E π΄) β dom π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 E cep 5579 β‘ccnv 5675 dom cdm 5676 β cima 5679 βcfv 6543 (class class class)co 7411 π βcbrsiga 33465 Probcprb 33692 rRndVarcrrv 33725 βRV/πcorvc 33740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ioo 13332 df-topgen 17393 df-top 22616 df-bases 22669 df-esum 33312 df-siga 33393 df-sigagen 33423 df-brsiga 33466 df-meas 33480 df-mbfm 33534 df-prob 33693 df-rrv 33726 df-orvc 33741 |
This theorem is referenced by: dstrvprob 33756 |
Copyright terms: Public domain | W3C validator |