Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wwlknllvtx | Structured version Visualization version GIF version |
Description: If a word 𝑊 represents a walk of a fixed length 𝑁, then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlknllvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlknllvtx | ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlknbp1 28110 | . . 3 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) | |
2 | wwlknvtx 28111 | . . 3 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺)) | |
3 | 0elfz 13282 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
4 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝑊‘𝑥) = (𝑊‘0)) | |
5 | 4 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺))) |
6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 = 0) → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺))) |
7 | 3, 6 | rspcdv 3543 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → (𝑊‘0) ∈ (Vtx‘𝐺))) |
8 | nn0fz0 13283 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | |
9 | 8 | biimpi 215 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
10 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑥 = 𝑁 → (𝑊‘𝑥) = (𝑊‘𝑁)) | |
11 | 10 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑥 = 𝑁 → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 = 𝑁) → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
13 | 9, 12 | rspcdv 3543 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
14 | 7, 13 | jcad 512 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺)))) |
15 | 14 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺)))) |
16 | 1, 2, 15 | sylc 65 | . 2 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
17 | wwlknllvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
18 | 17 | eleq2i 2830 | . . 3 ⊢ ((𝑊‘0) ∈ 𝑉 ↔ (𝑊‘0) ∈ (Vtx‘𝐺)) |
19 | 17 | eleq2i 2830 | . . 3 ⊢ ((𝑊‘𝑁) ∈ 𝑉 ↔ (𝑊‘𝑁) ∈ (Vtx‘𝐺)) |
20 | 18, 19 | anbi12i 626 | . 2 ⊢ (((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉) ↔ ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
21 | 16, 20 | sylibr 233 | 1 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 ℕ0cn0 12163 ...cfz 13168 ♯chash 13972 Word cword 14145 Vtxcvtx 27269 WWalksN cwwlksn 28092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-wwlks 28096 df-wwlksn 28097 |
This theorem is referenced by: iswwlksnon 28119 |
Copyright terms: Public domain | W3C validator |