| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wwlknllvtx | Structured version Visualization version GIF version | ||
| Description: If a word 𝑊 represents a walk of a fixed length 𝑁, then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022.) |
| Ref | Expression |
|---|---|
| wwlknllvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wwlknllvtx | ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlknbp1 29758 | . . 3 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) | |
| 2 | wwlknvtx 29759 | . . 3 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺)) | |
| 3 | 0elfz 13630 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
| 4 | fveq2 6872 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝑊‘𝑥) = (𝑊‘0)) | |
| 5 | 4 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺))) |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 = 0) → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺))) |
| 7 | 3, 6 | rspcdv 3591 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → (𝑊‘0) ∈ (Vtx‘𝐺))) |
| 8 | nn0fz0 13631 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | |
| 9 | 8 | biimpi 216 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
| 10 | fveq2 6872 | . . . . . . . 8 ⊢ (𝑥 = 𝑁 → (𝑊‘𝑥) = (𝑊‘𝑁)) | |
| 11 | 10 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑥 = 𝑁 → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 = 𝑁) → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
| 13 | 9, 12 | rspcdv 3591 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
| 14 | 7, 13 | jcad 512 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺)))) |
| 15 | 14 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺)))) |
| 16 | 1, 2, 15 | sylc 65 | . 2 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
| 17 | wwlknllvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 18 | 17 | eleq2i 2825 | . . 3 ⊢ ((𝑊‘0) ∈ 𝑉 ↔ (𝑊‘0) ∈ (Vtx‘𝐺)) |
| 19 | 17 | eleq2i 2825 | . . 3 ⊢ ((𝑊‘𝑁) ∈ 𝑉 ↔ (𝑊‘𝑁) ∈ (Vtx‘𝐺)) |
| 20 | 18, 19 | anbi12i 628 | . 2 ⊢ (((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉) ↔ ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
| 21 | 16, 20 | sylibr 234 | 1 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ‘cfv 6527 (class class class)co 7399 0cc0 11121 1c1 11122 + caddc 11124 ℕ0cn0 12493 ...cfz 13513 ♯chash 14336 Word cword 14519 Vtxcvtx 28907 WWalksN cwwlksn 29740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-fzo 13661 df-hash 14337 df-word 14520 df-wwlks 29744 df-wwlksn 29745 |
| This theorem is referenced by: iswwlksnon 29767 |
| Copyright terms: Public domain | W3C validator |