MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknllvtx Structured version   Visualization version   GIF version

Theorem wwlknllvtx 29819
Description: If a word 𝑊 represents a walk of a fixed length 𝑁, then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlknllvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlknllvtx (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉))

Proof of Theorem wwlknllvtx
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wwlknbp1 29817 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 wwlknvtx 29818 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺))
3 0elfz 13519 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
4 fveq2 6817 . . . . . . . 8 (𝑥 = 0 → (𝑊𝑥) = (𝑊‘0))
54eleq1d 2816 . . . . . . 7 (𝑥 = 0 → ((𝑊𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺)))
65adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 = 0) → ((𝑊𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺)))
73, 6rspcdv 3564 . . . . 5 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺) → (𝑊‘0) ∈ (Vtx‘𝐺)))
8 nn0fz0 13520 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
98biimpi 216 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
10 fveq2 6817 . . . . . . . 8 (𝑥 = 𝑁 → (𝑊𝑥) = (𝑊𝑁))
1110eleq1d 2816 . . . . . . 7 (𝑥 = 𝑁 → ((𝑊𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊𝑁) ∈ (Vtx‘𝐺)))
1211adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 = 𝑁) → ((𝑊𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊𝑁) ∈ (Vtx‘𝐺)))
139, 12rspcdv 3564 . . . . 5 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺) → (𝑊𝑁) ∈ (Vtx‘𝐺)))
147, 13jcad 512 . . . 4 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊𝑁) ∈ (Vtx‘𝐺))))
15143ad2ant1 1133 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊𝑁) ∈ (Vtx‘𝐺))))
161, 2, 15sylc 65 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊𝑁) ∈ (Vtx‘𝐺)))
17 wwlknllvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
1817eleq2i 2823 . . 3 ((𝑊‘0) ∈ 𝑉 ↔ (𝑊‘0) ∈ (Vtx‘𝐺))
1917eleq2i 2823 . . 3 ((𝑊𝑁) ∈ 𝑉 ↔ (𝑊𝑁) ∈ (Vtx‘𝐺))
2018, 19anbi12i 628 . 2 (((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉) ↔ ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊𝑁) ∈ (Vtx‘𝐺)))
2116, 20sylibr 234 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cfv 6476  (class class class)co 7341  0cc0 11001  1c1 11002   + caddc 11004  0cn0 12376  ...cfz 13402  chash 14232  Word cword 14415  Vtxcvtx 28969   WWalksN cwwlksn 29799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-hash 14233  df-word 14416  df-wwlks 29803  df-wwlksn 29804
This theorem is referenced by:  iswwlksnon  29826
  Copyright terms: Public domain W3C validator