![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlknllvtx | Structured version Visualization version GIF version |
Description: If a word 𝑊 represents a walk of a fixed length 𝑁, then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlknllvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlknllvtx | ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlknbp1 29531 | . . 3 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) | |
2 | wwlknvtx 29532 | . . 3 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺)) | |
3 | 0elfz 13605 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁)) | |
4 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑥 = 0 → (𝑊‘𝑥) = (𝑊‘0)) | |
5 | 4 | eleq1d 2817 | . . . . . . 7 ⊢ (𝑥 = 0 → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺))) |
6 | 5 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 = 0) → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺))) |
7 | 3, 6 | rspcdv 3604 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → (𝑊‘0) ∈ (Vtx‘𝐺))) |
8 | nn0fz0 13606 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | |
9 | 8 | biimpi 215 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
10 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑥 = 𝑁 → (𝑊‘𝑥) = (𝑊‘𝑁)) | |
11 | 10 | eleq1d 2817 | . . . . . . 7 ⊢ (𝑥 = 𝑁 → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑥 = 𝑁) → ((𝑊‘𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
13 | 9, 12 | rspcdv 3604 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
14 | 7, 13 | jcad 512 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺)))) |
15 | 14 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (∀𝑥 ∈ (0...𝑁)(𝑊‘𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺)))) |
16 | 1, 2, 15 | sylc 65 | . 2 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
17 | wwlknllvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
18 | 17 | eleq2i 2824 | . . 3 ⊢ ((𝑊‘0) ∈ 𝑉 ↔ (𝑊‘0) ∈ (Vtx‘𝐺)) |
19 | 17 | eleq2i 2824 | . . 3 ⊢ ((𝑊‘𝑁) ∈ 𝑉 ↔ (𝑊‘𝑁) ∈ (Vtx‘𝐺)) |
20 | 18, 19 | anbi12i 626 | . 2 ⊢ (((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉) ↔ ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊‘𝑁) ∈ (Vtx‘𝐺))) |
21 | 16, 20 | sylibr 233 | 1 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊‘𝑁) ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ‘cfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 + caddc 11119 ℕ0cn0 12479 ...cfz 13491 ♯chash 14297 Word cword 14471 Vtxcvtx 28689 WWalksN cwwlksn 29513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-hash 14298 df-word 14472 df-wwlks 29517 df-wwlksn 29518 |
This theorem is referenced by: iswwlksnon 29540 |
Copyright terms: Public domain | W3C validator |