MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlknllvtx Structured version   Visualization version   GIF version

Theorem wwlknllvtx 27616
Description: If a word 𝑊 represents a walk of a fixed length 𝑁, then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022.)
Hypothesis
Ref Expression
wwlknllvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlknllvtx (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉))

Proof of Theorem wwlknllvtx
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wwlknbp1 27614 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 wwlknvtx 27615 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺))
3 0elfz 12996 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
4 fveq2 6663 . . . . . . . 8 (𝑥 = 0 → (𝑊𝑥) = (𝑊‘0))
54eleq1d 2895 . . . . . . 7 (𝑥 = 0 → ((𝑊𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺)))
65adantl 484 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 = 0) → ((𝑊𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊‘0) ∈ (Vtx‘𝐺)))
73, 6rspcdv 3613 . . . . 5 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺) → (𝑊‘0) ∈ (Vtx‘𝐺)))
8 nn0fz0 12997 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
98biimpi 218 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
10 fveq2 6663 . . . . . . . 8 (𝑥 = 𝑁 → (𝑊𝑥) = (𝑊𝑁))
1110eleq1d 2895 . . . . . . 7 (𝑥 = 𝑁 → ((𝑊𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊𝑁) ∈ (Vtx‘𝐺)))
1211adantl 484 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 = 𝑁) → ((𝑊𝑥) ∈ (Vtx‘𝐺) ↔ (𝑊𝑁) ∈ (Vtx‘𝐺)))
139, 12rspcdv 3613 . . . . 5 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺) → (𝑊𝑁) ∈ (Vtx‘𝐺)))
147, 13jcad 515 . . . 4 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊𝑁) ∈ (Vtx‘𝐺))))
15143ad2ant1 1128 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (∀𝑥 ∈ (0...𝑁)(𝑊𝑥) ∈ (Vtx‘𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊𝑁) ∈ (Vtx‘𝐺))))
161, 2, 15sylc 65 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊𝑁) ∈ (Vtx‘𝐺)))
17 wwlknllvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
1817eleq2i 2902 . . 3 ((𝑊‘0) ∈ 𝑉 ↔ (𝑊‘0) ∈ (Vtx‘𝐺))
1917eleq2i 2902 . . 3 ((𝑊𝑁) ∈ 𝑉 ↔ (𝑊𝑁) ∈ (Vtx‘𝐺))
2018, 19anbi12i 628 . 2 (((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉) ↔ ((𝑊‘0) ∈ (Vtx‘𝐺) ∧ (𝑊𝑁) ∈ (Vtx‘𝐺)))
2116, 20sylibr 236 1 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((𝑊‘0) ∈ 𝑉 ∧ (𝑊𝑁) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  cfv 6348  (class class class)co 7148  0cc0 10529  1c1 10530   + caddc 10532  0cn0 11889  ...cfz 12884  chash 13682  Word cword 13853  Vtxcvtx 26773   WWalksN cwwlksn 27596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-wwlks 27600  df-wwlksn 27601
This theorem is referenced by:  iswwlksnon  27623
  Copyright terms: Public domain W3C validator