Proof of Theorem fargshiftfva
| Step | Hyp | Ref
| Expression |
| 1 | | fz0add1fz1 13775 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → (𝑙 + 1) ∈ (1...𝑁)) |
| 2 | | simpl 482 |
. . . . . . . . . . 11
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → (𝑙 + 1) ∈ (1...𝑁)) |
| 3 | 2 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 + 1) ∈ (1...𝑁)) |
| 4 | | 2fveq3 6910 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑙 + 1) → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘(𝑙 + 1)))) |
| 5 | | csbeq1 3901 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑙 + 1) → ⦋𝑘 / 𝑥⦌𝑃 = ⦋(𝑙 + 1) / 𝑥⦌𝑃) |
| 6 | 4, 5 | eqeq12d 2752 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑙 + 1) → ((𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
| 7 | 6 | adantl 481 |
. . . . . . . . . . 11
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
| 8 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → 𝑁 ∈
ℕ0) |
| 9 | 8 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → 𝑁 ∈
ℕ0) |
| 10 | 9 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸)) |
| 11 | 10 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸)) |
| 12 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → 𝑙 ∈ (0..^𝑁)) |
| 13 | 12 | ad3antlr 731 |
. . . . . . . . . . . . 13
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → 𝑙 ∈ (0..^𝑁)) |
| 14 | | fargshift.g |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) |
| 15 | 14 | fargshiftfv 47431 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 ∈ (0..^𝑁) → (𝐺‘𝑙) = (𝐹‘(𝑙 + 1)))) |
| 16 | 15 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐺‘𝑙) = (𝐹‘(𝑙 + 1))) |
| 17 | 16 | eqcomd 2742 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐹‘(𝑙 + 1)) = (𝐺‘𝑙)) |
| 18 | 11, 13, 17 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝐹‘(𝑙 + 1)) = (𝐺‘𝑙)) |
| 19 | 18 | fveqeq2d 6913 |
. . . . . . . . . . 11
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘(𝑙 + 1))) = ⦋(𝑙 + 1) / 𝑥⦌𝑃 ↔ (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
| 20 | 7, 19 | bitrd 279 |
. . . . . . . . . 10
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 ↔ (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
| 21 | 3, 20 | rspcdv 3613 |
. . . . . . . . 9
⊢ ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
| 22 | 21 | ex 412 |
. . . . . . . 8
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃))) |
| 23 | 22 | com23 86 |
. . . . . . 7
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃))) |
| 24 | 1, 23 | mpancom 688 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃))) |
| 25 | 24 | ex 412 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑙 ∈ (0..^𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)))) |
| 26 | 25 | com24 95 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)))) |
| 27 | 26 | imp31 417 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃) → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
| 28 | 27 | ralrimiv 3144 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃) → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃) |
| 29 | 28 | ex 412 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |