Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfva Structured version   Visualization version   GIF version

Theorem fargshiftfva 47444
Description: The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftfva ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸   𝑘,𝐹,𝑙,𝑥   𝑥,𝑁   𝑘,𝐸   𝑘,𝐺   𝑘,𝑁   𝑃,𝑘   𝐸,𝑙   𝑁,𝑙   𝑃,𝑙
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥,𝑙)

Proof of Theorem fargshiftfva
StepHypRef Expression
1 fz0add1fz1 13696 . . . . . . 7 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → (𝑙 + 1) ∈ (1...𝑁))
2 simpl 482 . . . . . . . . . . 11 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (𝑙 + 1) ∈ (1...𝑁))
32adantr 480 . . . . . . . . . 10 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 + 1) ∈ (1...𝑁))
4 2fveq3 6863 . . . . . . . . . . . . 13 (𝑘 = (𝑙 + 1) → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘(𝑙 + 1))))
5 csbeq1 3865 . . . . . . . . . . . . 13 (𝑘 = (𝑙 + 1) → 𝑘 / 𝑥𝑃 = (𝑙 + 1) / 𝑥𝑃)
64, 5eqeq12d 2745 . . . . . . . . . . . 12 (𝑘 = (𝑙 + 1) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃))
76adantl 481 . . . . . . . . . . 11 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃))
8 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
98adantl 481 . . . . . . . . . . . . . . 15 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → 𝑁 ∈ ℕ0)
109anim1i 615 . . . . . . . . . . . . . 14 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸))
1110adantr 480 . . . . . . . . . . . . 13 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸))
12 simpr 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → 𝑙 ∈ (0..^𝑁))
1312ad3antlr 731 . . . . . . . . . . . . 13 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → 𝑙 ∈ (0..^𝑁))
14 fargshift.g . . . . . . . . . . . . . . . 16 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
1514fargshiftfv 47440 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 ∈ (0..^𝑁) → (𝐺𝑙) = (𝐹‘(𝑙 + 1))))
1615imp 406 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐺𝑙) = (𝐹‘(𝑙 + 1)))
1716eqcomd 2735 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐹‘(𝑙 + 1)) = (𝐺𝑙))
1811, 13, 17syl2anc 584 . . . . . . . . . . . 12 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝐹‘(𝑙 + 1)) = (𝐺𝑙))
1918fveqeq2d 6866 . . . . . . . . . . 11 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃 ↔ (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
207, 19bitrd 279 . . . . . . . . . 10 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
213, 20rspcdv 3580 . . . . . . . . 9 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
2221ex 412 . . . . . . . 8 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
2322com23 86 . . . . . . 7 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
241, 23mpancom 688 . . . . . 6 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
2524ex 412 . . . . 5 (𝑁 ∈ ℕ0 → (𝑙 ∈ (0..^𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))))
2625com24 95 . . . 4 (𝑁 ∈ ℕ0 → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))))
2726imp31 417 . . 3 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃) → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
2827ralrimiv 3124 . 2 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃) → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)
2928ex 412 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  csb 3862  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  0cn0 12442  ...cfz 13468  ..^cfzo 13615  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator