Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfva Structured version   Visualization version   GIF version

Theorem fargshiftfva 47453
Description: The values of a shifted function correspond to the value of the original function. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftfva ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸   𝑘,𝐹,𝑙,𝑥   𝑥,𝑁   𝑘,𝐸   𝑘,𝐺   𝑘,𝑁   𝑃,𝑘   𝐸,𝑙   𝑁,𝑙   𝑃,𝑙
Allowed substitution hints:   𝑃(𝑥)   𝐺(𝑥,𝑙)

Proof of Theorem fargshiftfva
StepHypRef Expression
1 fz0add1fz1 13627 . . . . . . 7 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → (𝑙 + 1) ∈ (1...𝑁))
2 simpl 482 . . . . . . . . . . 11 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (𝑙 + 1) ∈ (1...𝑁))
32adantr 480 . . . . . . . . . 10 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 + 1) ∈ (1...𝑁))
4 2fveq3 6822 . . . . . . . . . . . . 13 (𝑘 = (𝑙 + 1) → (𝐸‘(𝐹𝑘)) = (𝐸‘(𝐹‘(𝑙 + 1))))
5 csbeq1 3851 . . . . . . . . . . . . 13 (𝑘 = (𝑙 + 1) → 𝑘 / 𝑥𝑃 = (𝑙 + 1) / 𝑥𝑃)
64, 5eqeq12d 2746 . . . . . . . . . . . 12 (𝑘 = (𝑙 + 1) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃))
76adantl 481 . . . . . . . . . . 11 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃))
8 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
98adantl 481 . . . . . . . . . . . . . . 15 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → 𝑁 ∈ ℕ0)
109anim1i 615 . . . . . . . . . . . . . 14 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸))
1110adantr 480 . . . . . . . . . . . . 13 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸))
12 simpr 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → 𝑙 ∈ (0..^𝑁))
1312ad3antlr 731 . . . . . . . . . . . . 13 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → 𝑙 ∈ (0..^𝑁))
14 fargshift.g . . . . . . . . . . . . . . . 16 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
1514fargshiftfv 47449 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 ∈ (0..^𝑁) → (𝐺𝑙) = (𝐹‘(𝑙 + 1))))
1615imp 406 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐺𝑙) = (𝐹‘(𝑙 + 1)))
1716eqcomd 2736 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐹‘(𝑙 + 1)) = (𝐺𝑙))
1811, 13, 17syl2anc 584 . . . . . . . . . . . 12 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝐹‘(𝑙 + 1)) = (𝐺𝑙))
1918fveqeq2d 6825 . . . . . . . . . . 11 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘(𝑙 + 1))) = (𝑙 + 1) / 𝑥𝑃 ↔ (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
207, 19bitrd 279 . . . . . . . . . 10 (((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 ↔ (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
213, 20rspcdv 3567 . . . . . . . . 9 ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
2221ex 412 . . . . . . . 8 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
2322com23 86 . . . . . . 7 (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁))) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
241, 23mpancom 688 . . . . . 6 ((𝑁 ∈ ℕ0𝑙 ∈ (0..^𝑁)) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)))
2524ex 412 . . . . 5 (𝑁 ∈ ℕ0 → (𝑙 ∈ (0..^𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))))
2625com24 95 . . . 4 (𝑁 ∈ ℕ0 → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))))
2726imp31 417 . . 3 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃) → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
2827ralrimiv 3121 . 2 (((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃) → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃)
2928ex 412 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹𝑘)) = 𝑘 / 𝑥𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺𝑙)) = (𝑙 + 1) / 𝑥𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  csb 3848  cmpt 5170  dom cdm 5614  wf 6473  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999   + caddc 11001  0cn0 12373  ...cfz 13399  ..^cfzo 13546  chash 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator