Proof of Theorem fargshiftfva
Step | Hyp | Ref
| Expression |
1 | | fz0add1fz1 13157 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → (𝑙 + 1) ∈ (1...𝑁)) |
2 | | simpl 487 |
. . . . . . . . . . 11
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → (𝑙 + 1) ∈ (1...𝑁)) |
3 | 2 | adantr 485 |
. . . . . . . . . 10
⊢ ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 + 1) ∈ (1...𝑁)) |
4 | | 2fveq3 6664 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑙 + 1) → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘(𝑙 + 1)))) |
5 | | csbeq1 3809 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑙 + 1) → ⦋𝑘 / 𝑥⦌𝑃 = ⦋(𝑙 + 1) / 𝑥⦌𝑃) |
6 | 4, 5 | eqeq12d 2775 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑙 + 1) → ((𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
7 | 6 | adantl 486 |
. . . . . . . . . . 11
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
8 | | simpl 487 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → 𝑁 ∈
ℕ0) |
9 | 8 | adantl 486 |
. . . . . . . . . . . . . . 15
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → 𝑁 ∈
ℕ0) |
10 | 9 | anim1i 618 |
. . . . . . . . . . . . . 14
⊢ ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸)) |
11 | 10 | adantr 485 |
. . . . . . . . . . . . 13
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸)) |
12 | | simpr 489 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → 𝑙 ∈ (0..^𝑁)) |
13 | 12 | ad3antlr 731 |
. . . . . . . . . . . . 13
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → 𝑙 ∈ (0..^𝑁)) |
14 | | fargshift.g |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) |
15 | 14 | fargshiftfv 44325 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 ∈ (0..^𝑁) → (𝐺‘𝑙) = (𝐹‘(𝑙 + 1)))) |
16 | 15 | imp 411 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐺‘𝑙) = (𝐹‘(𝑙 + 1))) |
17 | 16 | eqcomd 2765 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐹‘(𝑙 + 1)) = (𝐺‘𝑙)) |
18 | 11, 13, 17 | syl2anc 588 |
. . . . . . . . . . . 12
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝐹‘(𝑙 + 1)) = (𝐺‘𝑙)) |
19 | 18 | fveqeq2d 6667 |
. . . . . . . . . . 11
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘(𝑙 + 1))) = ⦋(𝑙 + 1) / 𝑥⦌𝑃 ↔ (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
20 | 7, 19 | bitrd 282 |
. . . . . . . . . 10
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 ↔ (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
21 | 3, 20 | rspcdv 3534 |
. . . . . . . . 9
⊢ ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
22 | 21 | ex 417 |
. . . . . . . 8
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃))) |
23 | 22 | com23 86 |
. . . . . . 7
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃))) |
24 | 1, 23 | mpancom 688 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃))) |
25 | 24 | ex 417 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑙 ∈ (0..^𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)))) |
26 | 25 | com24 95 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)))) |
27 | 26 | imp31 422 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃) → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
28 | 27 | ralrimiv 3113 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃) → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃) |
29 | 28 | ex 417 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |