Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prct Structured version   Visualization version   GIF version

Theorem prct 32688
Description: An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.)
Assertion
Ref Expression
prct ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ≼ ω)

Proof of Theorem prct
StepHypRef Expression
1 df-pr 4574 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 snct 32687 . . 3 (𝐴𝑉 → {𝐴} ≼ ω)
3 snct 32687 . . 3 (𝐵𝑊 → {𝐵} ≼ ω)
4 unctb 10090 . . 3 (({𝐴} ≼ ω ∧ {𝐵} ≼ ω) → ({𝐴} ∪ {𝐵}) ≼ ω)
52, 3, 4syl2an 596 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ∪ {𝐵}) ≼ ω)
61, 5eqbrtrid 5121 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  cun 3895  {csn 4571  {cpr 4573   class class class wbr 5086  ωcom 7791  cdom 8862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-dju 9789  df-card 9827
This theorem is referenced by:  difelsiga  34138  unelsiga  34139  unelldsys  34163  measxun2  34215  measssd  34220  carsgsigalem  34320  carsgclctun  34326  pmeasmono  34329  probun  34424
  Copyright terms: Public domain W3C validator