Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prct Structured version   Visualization version   GIF version

Theorem prct 31926
Description: An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.)
Assertion
Ref Expression
prct ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ≼ ω)

Proof of Theorem prct
StepHypRef Expression
1 df-pr 4630 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 snct 31925 . . 3 (𝐴𝑉 → {𝐴} ≼ ω)
3 snct 31925 . . 3 (𝐵𝑊 → {𝐵} ≼ ω)
4 unctb 10196 . . 3 (({𝐴} ≼ ω ∧ {𝐵} ≼ ω) → ({𝐴} ∪ {𝐵}) ≼ ω)
52, 3, 4syl2an 596 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ∪ {𝐵}) ≼ ω)
61, 5eqbrtrid 5182 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  cun 3945  {csn 4627  {cpr 4629   class class class wbr 5147  ωcom 7851  cdom 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-dju 9892  df-card 9930
This theorem is referenced by:  difelsiga  33119  unelsiga  33120  unelldsys  33144  measxun2  33196  measssd  33201  carsgsigalem  33302  carsgclctun  33308  pmeasmono  33311  probun  33406
  Copyright terms: Public domain W3C validator