Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prct Structured version   Visualization version   GIF version

Theorem prct 30480
Description: An unordered pair is countable. (Contributed by Thierry Arnoux, 16-Sep-2016.)
Assertion
Ref Expression
prct ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ≼ ω)

Proof of Theorem prct
StepHypRef Expression
1 df-pr 4531 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 snct 30479 . . 3 (𝐴𝑉 → {𝐴} ≼ ω)
3 snct 30479 . . 3 (𝐵𝑊 → {𝐵} ≼ ω)
4 unctb 9620 . . 3 (({𝐴} ≼ ω ∧ {𝐵} ≼ ω) → ({𝐴} ∪ {𝐵}) ≼ ω)
52, 3, 4syl2an 598 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} ∪ {𝐵}) ≼ ω)
61, 5eqbrtrid 5068 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  cun 3882  {csn 4528  {cpr 4530   class class class wbr 5033  ωcom 7564  cdom 8494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-oi 8962  df-dju 9318  df-card 9356
This theorem is referenced by:  difelsiga  31506  unelsiga  31507  unelldsys  31531  measxun2  31583  measssd  31588  carsgsigalem  31687  carsgclctun  31693  pmeasmono  31696  probun  31791
  Copyright terms: Public domain W3C validator