![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngqiprngho | Structured version Visualization version GIF version |
Description: πΉ is a homomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025.) |
Ref | Expression |
---|---|
rng2idlring.r | β’ (π β π β Rng) |
rng2idlring.i | β’ (π β πΌ β (2Idealβπ )) |
rng2idlring.j | β’ π½ = (π βΎs πΌ) |
rng2idlring.u | β’ (π β π½ β Ring) |
rng2idlring.b | β’ π΅ = (Baseβπ ) |
rng2idlring.t | β’ Β· = (.rβπ ) |
rng2idlring.1 | β’ 1 = (1rβπ½) |
rngqiprngim.g | β’ βΌ = (π ~QG πΌ) |
rngqiprngim.q | β’ π = (π /s βΌ ) |
rngqiprngim.c | β’ πΆ = (Baseβπ) |
rngqiprngim.p | β’ π = (π Γs π½) |
rngqiprngim.f | β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) |
Ref | Expression |
---|---|
rngqiprngho | β’ (π β πΉ β (π RngHomo π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | . 2 β’ (π β π β Rng) | |
2 | rng2idlring.i | . . 3 β’ (π β πΌ β (2Idealβπ )) | |
3 | rng2idlring.j | . . 3 β’ π½ = (π βΎs πΌ) | |
4 | rng2idlring.u | . . 3 β’ (π β π½ β Ring) | |
5 | rng2idlring.b | . . 3 β’ π΅ = (Baseβπ ) | |
6 | rng2idlring.t | . . 3 β’ Β· = (.rβπ ) | |
7 | rng2idlring.1 | . . 3 β’ 1 = (1rβπ½) | |
8 | rngqiprngim.g | . . 3 β’ βΌ = (π ~QG πΌ) | |
9 | rngqiprngim.q | . . 3 β’ π = (π /s βΌ ) | |
10 | rngqiprngim.c | . . 3 β’ πΆ = (Baseβπ) | |
11 | rngqiprngim.p | . . 3 β’ π = (π Γs π½) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | rngqiprng 46866 | . 2 β’ (π β π β Rng) |
13 | rngqiprngim.f | . . . 4 β’ πΉ = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13 | rngqiprngghm 46869 | . . 3 β’ (π β πΉ β (π GrpHom π)) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13 | rngqiprnglin 46872 | . . 3 β’ (π β βπ β π΅ βπ β π΅ (πΉβ(π Β· π)) = ((πΉβπ)(.rβπ)(πΉβπ))) |
16 | 14, 15 | jca 512 | . 2 β’ (π β (πΉ β (π GrpHom π) β§ βπ β π΅ βπ β π΅ (πΉβ(π Β· π)) = ((πΉβπ)(.rβπ)(πΉβπ)))) |
17 | eqid 2732 | . . 3 β’ (.rβπ) = (.rβπ) | |
18 | 5, 6, 17 | isrnghm 46775 | . 2 β’ (πΉ β (π RngHomo π) β ((π β Rng β§ π β Rng) β§ (πΉ β (π GrpHom π) β§ βπ β π΅ βπ β π΅ (πΉβ(π Β· π)) = ((πΉβπ)(.rβπ)(πΉβπ))))) |
19 | 1, 12, 16, 18 | syl21anbrc 1344 | 1 β’ (π β πΉ β (π RngHomo π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β¨cop 4634 β¦ cmpt 5231 βcfv 6543 (class class class)co 7411 [cec 8703 Basecbs 17146 βΎs cress 17175 .rcmulr 17200 /s cqus 17453 Γs cxps 17454 ~QG cqg 19004 GrpHom cghm 19091 1rcur 20006 Ringcrg 20058 2Idealc2idl 20862 Rngcrng 46733 RngHomo crngh 46768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-tpos 8213 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-fz 13487 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-sca 17215 df-vsca 17216 df-ip 17217 df-tset 17218 df-ple 17219 df-ds 17221 df-hom 17223 df-cco 17224 df-0g 17389 df-prds 17395 df-imas 17456 df-qus 17457 df-xps 17458 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-grp 18824 df-minusg 18825 df-sbg 18826 df-subg 19005 df-nsg 19006 df-eqg 19007 df-ghm 19092 df-cmn 19652 df-abl 19653 df-mgp 19990 df-ur 20007 df-ring 20060 df-oppr 20154 df-lss 20548 df-sra 20791 df-rgmod 20792 df-lidl 20793 df-2idl 20863 df-rng 46734 df-rnghomo 46770 df-subrng 46810 |
This theorem is referenced by: rngqiprngim 46874 |
Copyright terms: Public domain | W3C validator |