| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrhm2d | Structured version Visualization version GIF version | ||
| Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
| Ref | Expression |
|---|---|
| isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
| isrhmd.o | ⊢ 1 = (1r‘𝑅) |
| isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
| isrhmd.t | ⊢ · = (.r‘𝑅) |
| isrhmd.u | ⊢ × = (.r‘𝑆) |
| isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
| isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
| isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| isrhm2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| Ref | Expression |
|---|---|
| isrhm2d | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | isrhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
| 3 | isrhm2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 4 | ringmgp 20155 | . . . . 5 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 7 | eqid 2730 | . . . . . 6 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 8 | 7 | ringmgp 20155 | . . . . 5 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
| 10 | isrhmd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 12 | 10, 11 | ghmf 19159 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆)) |
| 13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑆)) |
| 14 | isrhmd.ht | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
| 15 | 14 | ralrimivva 3181 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| 16 | isrhmd.ho | . . . . . 6 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
| 17 | isrhmd.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
| 18 | 4, 17 | ringidval 20099 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
| 19 | 18 | fveq2i 6864 | . . . . . 6 ⊢ (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))) |
| 20 | isrhmd.n | . . . . . . 7 ⊢ 𝑁 = (1r‘𝑆) | |
| 21 | 7, 20 | ringidval 20099 | . . . . . 6 ⊢ 𝑁 = (0g‘(mulGrp‘𝑆)) |
| 22 | 16, 19, 21 | 3eqtr3g 2788 | . . . . 5 ⊢ (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))) |
| 23 | 13, 15, 22 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))) |
| 24 | 4, 10 | mgpbas 20061 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 25 | 7, 11 | mgpbas 20061 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘(mulGrp‘𝑆)) |
| 26 | isrhmd.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 27 | 4, 26 | mgpplusg 20060 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 28 | isrhmd.u | . . . . . 6 ⊢ × = (.r‘𝑆) | |
| 29 | 7, 28 | mgpplusg 20060 | . . . . 5 ⊢ × = (+g‘(mulGrp‘𝑆)) |
| 30 | eqid 2730 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 31 | eqid 2730 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆)) | |
| 32 | 24, 25, 27, 29, 30, 31 | ismhm 18719 | . . . 4 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))) |
| 33 | 6, 9, 23, 32 | syl21anbrc 1345 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
| 34 | 3, 33 | jca 511 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 35 | 4, 7 | isrhm 20394 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
| 36 | 1, 2, 34, 35 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 0gc0g 17409 Mndcmnd 18668 MndHom cmhm 18715 GrpHom cghm 19151 mulGrpcmgp 20056 1rcur 20097 Ringcrg 20149 RingHom crh 20385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mhm 18717 df-ghm 19152 df-mgp 20057 df-ur 20098 df-ring 20151 df-rhm 20388 |
| This theorem is referenced by: isrhmd 20404 rhmopp 20425 qusrhm 21193 rhmqusnsg 21202 mulgrhm 21394 asclrhm 21806 rhmquskerlem 33403 |
| Copyright terms: Public domain | W3C validator |