Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isrhm2d | Structured version Visualization version GIF version |
Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrhmd.o | ⊢ 1 = (1r‘𝑅) |
isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
isrhmd.t | ⊢ · = (.r‘𝑅) |
isrhmd.u | ⊢ × = (.r‘𝑆) |
isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrhm2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Ref | Expression |
---|---|
isrhm2d | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | isrhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
3 | isrhm2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
4 | eqid 2738 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
5 | 4 | ringmgp 19704 | . . . . 5 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
7 | eqid 2738 | . . . . . 6 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
8 | 7 | ringmgp 19704 | . . . . 5 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
10 | isrhmd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
11 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
12 | 10, 11 | ghmf 18753 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆)) |
13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑆)) |
14 | isrhmd.ht | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
15 | 14 | ralrimivva 3114 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
16 | isrhmd.ho | . . . . . 6 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
17 | isrhmd.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
18 | 4, 17 | ringidval 19654 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
19 | 18 | fveq2i 6759 | . . . . . 6 ⊢ (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))) |
20 | isrhmd.n | . . . . . . 7 ⊢ 𝑁 = (1r‘𝑆) | |
21 | 7, 20 | ringidval 19654 | . . . . . 6 ⊢ 𝑁 = (0g‘(mulGrp‘𝑆)) |
22 | 16, 19, 21 | 3eqtr3g 2802 | . . . . 5 ⊢ (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))) |
23 | 13, 15, 22 | 3jca 1126 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))) |
24 | 4, 10 | mgpbas 19641 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
25 | 7, 11 | mgpbas 19641 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘(mulGrp‘𝑆)) |
26 | isrhmd.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
27 | 4, 26 | mgpplusg 19639 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
28 | isrhmd.u | . . . . . 6 ⊢ × = (.r‘𝑆) | |
29 | 7, 28 | mgpplusg 19639 | . . . . 5 ⊢ × = (+g‘(mulGrp‘𝑆)) |
30 | eqid 2738 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
31 | eqid 2738 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆)) | |
32 | 24, 25, 27, 29, 30, 31 | ismhm 18347 | . . . 4 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))) |
33 | 6, 9, 23, 32 | syl21anbrc 1342 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
34 | 3, 33 | jca 511 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
35 | 4, 7 | isrhm 19880 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
36 | 1, 2, 34, 35 | syl21anbrc 1342 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 0gc0g 17067 Mndcmnd 18300 MndHom cmhm 18343 GrpHom cghm 18746 mulGrpcmgp 19635 1rcur 19652 Ringcrg 19698 RingHom crh 19871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mhm 18345 df-ghm 18747 df-mgp 19636 df-ur 19653 df-ring 19700 df-rnghom 19874 |
This theorem is referenced by: isrhmd 19888 qusrhm 20421 mulgrhm 20611 asclrhm 21004 rhmopp 31420 |
Copyright terms: Public domain | W3C validator |