![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrhm2d | Structured version Visualization version GIF version |
Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrhmd.o | ⊢ 1 = (1r‘𝑅) |
isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
isrhmd.t | ⊢ · = (.r‘𝑅) |
isrhmd.u | ⊢ × = (.r‘𝑆) |
isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrhm2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Ref | Expression |
---|---|
isrhm2d | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | isrhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
3 | isrhm2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
4 | eqid 2740 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
5 | 4 | ringmgp 20266 | . . . . 5 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
7 | eqid 2740 | . . . . . 6 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
8 | 7 | ringmgp 20266 | . . . . 5 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
10 | isrhmd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
11 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
12 | 10, 11 | ghmf 19260 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆)) |
13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑆)) |
14 | isrhmd.ht | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
15 | 14 | ralrimivva 3208 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
16 | isrhmd.ho | . . . . . 6 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
17 | isrhmd.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
18 | 4, 17 | ringidval 20210 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
19 | 18 | fveq2i 6923 | . . . . . 6 ⊢ (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))) |
20 | isrhmd.n | . . . . . . 7 ⊢ 𝑁 = (1r‘𝑆) | |
21 | 7, 20 | ringidval 20210 | . . . . . 6 ⊢ 𝑁 = (0g‘(mulGrp‘𝑆)) |
22 | 16, 19, 21 | 3eqtr3g 2803 | . . . . 5 ⊢ (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))) |
23 | 13, 15, 22 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))) |
24 | 4, 10 | mgpbas 20167 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
25 | 7, 11 | mgpbas 20167 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘(mulGrp‘𝑆)) |
26 | isrhmd.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
27 | 4, 26 | mgpplusg 20165 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
28 | isrhmd.u | . . . . . 6 ⊢ × = (.r‘𝑆) | |
29 | 7, 28 | mgpplusg 20165 | . . . . 5 ⊢ × = (+g‘(mulGrp‘𝑆)) |
30 | eqid 2740 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
31 | eqid 2740 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆)) | |
32 | 24, 25, 27, 29, 30, 31 | ismhm 18820 | . . . 4 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))) |
33 | 6, 9, 23, 32 | syl21anbrc 1344 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
34 | 3, 33 | jca 511 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
35 | 4, 7 | isrhm 20504 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
36 | 1, 2, 34, 35 | syl21anbrc 1344 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 Mndcmnd 18772 MndHom cmhm 18816 GrpHom cghm 19252 mulGrpcmgp 20161 1rcur 20208 Ringcrg 20260 RingHom crh 20495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mhm 18818 df-ghm 19253 df-mgp 20162 df-ur 20209 df-ring 20262 df-rhm 20498 |
This theorem is referenced by: isrhmd 20514 rhmopp 20535 qusrhm 21309 rhmqusnsg 21318 mulgrhm 21511 asclrhm 21933 rhmquskerlem 33418 |
Copyright terms: Public domain | W3C validator |