| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrhm2d | Structured version Visualization version GIF version | ||
| Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
| Ref | Expression |
|---|---|
| isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
| isrhmd.o | ⊢ 1 = (1r‘𝑅) |
| isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
| isrhmd.t | ⊢ · = (.r‘𝑅) |
| isrhmd.u | ⊢ × = (.r‘𝑆) |
| isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
| isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
| isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| isrhm2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| Ref | Expression |
|---|---|
| isrhm2d | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | isrhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
| 3 | isrhm2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 4 | eqid 2735 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 4 | ringmgp 20199 | . . . . 5 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 7 | eqid 2735 | . . . . . 6 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 8 | 7 | ringmgp 20199 | . . . . 5 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
| 10 | isrhmd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 12 | 10, 11 | ghmf 19203 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆)) |
| 13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑆)) |
| 14 | isrhmd.ht | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
| 15 | 14 | ralrimivva 3187 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| 16 | isrhmd.ho | . . . . . 6 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
| 17 | isrhmd.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
| 18 | 4, 17 | ringidval 20143 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
| 19 | 18 | fveq2i 6879 | . . . . . 6 ⊢ (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))) |
| 20 | isrhmd.n | . . . . . . 7 ⊢ 𝑁 = (1r‘𝑆) | |
| 21 | 7, 20 | ringidval 20143 | . . . . . 6 ⊢ 𝑁 = (0g‘(mulGrp‘𝑆)) |
| 22 | 16, 19, 21 | 3eqtr3g 2793 | . . . . 5 ⊢ (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))) |
| 23 | 13, 15, 22 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))) |
| 24 | 4, 10 | mgpbas 20105 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 25 | 7, 11 | mgpbas 20105 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘(mulGrp‘𝑆)) |
| 26 | isrhmd.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 27 | 4, 26 | mgpplusg 20104 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 28 | isrhmd.u | . . . . . 6 ⊢ × = (.r‘𝑆) | |
| 29 | 7, 28 | mgpplusg 20104 | . . . . 5 ⊢ × = (+g‘(mulGrp‘𝑆)) |
| 30 | eqid 2735 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 31 | eqid 2735 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆)) | |
| 32 | 24, 25, 27, 29, 30, 31 | ismhm 18763 | . . . 4 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))) |
| 33 | 6, 9, 23, 32 | syl21anbrc 1345 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
| 34 | 3, 33 | jca 511 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 35 | 4, 7 | isrhm 20438 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
| 36 | 1, 2, 34, 35 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 0gc0g 17453 Mndcmnd 18712 MndHom cmhm 18759 GrpHom cghm 19195 mulGrpcmgp 20100 1rcur 20141 Ringcrg 20193 RingHom crh 20429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-mhm 18761 df-ghm 19196 df-mgp 20101 df-ur 20142 df-ring 20195 df-rhm 20432 |
| This theorem is referenced by: isrhmd 20448 rhmopp 20469 qusrhm 21237 rhmqusnsg 21246 mulgrhm 21438 asclrhm 21850 rhmquskerlem 33440 |
| Copyright terms: Public domain | W3C validator |