| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrhm2d | Structured version Visualization version GIF version | ||
| Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
| Ref | Expression |
|---|---|
| isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
| isrhmd.o | ⊢ 1 = (1r‘𝑅) |
| isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
| isrhmd.t | ⊢ · = (.r‘𝑅) |
| isrhmd.u | ⊢ × = (.r‘𝑆) |
| isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
| isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
| isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| isrhm2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| Ref | Expression |
|---|---|
| isrhm2d | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrhmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | isrhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
| 3 | isrhm2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 5 | 4 | ringmgp 20124 | . . . . 5 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 8 | 7 | ringmgp 20124 | . . . . 5 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
| 9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
| 10 | isrhmd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 12 | 10, 11 | ghmf 19099 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆)) |
| 13 | 3, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑆)) |
| 14 | isrhmd.ht | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
| 15 | 14 | ralrimivva 3172 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| 16 | isrhmd.ho | . . . . . 6 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
| 17 | isrhmd.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
| 18 | 4, 17 | ringidval 20068 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
| 19 | 18 | fveq2i 6825 | . . . . . 6 ⊢ (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))) |
| 20 | isrhmd.n | . . . . . . 7 ⊢ 𝑁 = (1r‘𝑆) | |
| 21 | 7, 20 | ringidval 20068 | . . . . . 6 ⊢ 𝑁 = (0g‘(mulGrp‘𝑆)) |
| 22 | 16, 19, 21 | 3eqtr3g 2787 | . . . . 5 ⊢ (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))) |
| 23 | 13, 15, 22 | 3jca 1128 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))) |
| 24 | 4, 10 | mgpbas 20030 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 25 | 7, 11 | mgpbas 20030 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘(mulGrp‘𝑆)) |
| 26 | isrhmd.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 27 | 4, 26 | mgpplusg 20029 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 28 | isrhmd.u | . . . . . 6 ⊢ × = (.r‘𝑆) | |
| 29 | 7, 28 | mgpplusg 20029 | . . . . 5 ⊢ × = (+g‘(mulGrp‘𝑆)) |
| 30 | eqid 2729 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
| 31 | eqid 2729 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆)) | |
| 32 | 24, 25, 27, 29, 30, 31 | ismhm 18659 | . . . 4 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))) |
| 33 | 6, 9, 23, 32 | syl21anbrc 1345 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
| 34 | 3, 33 | jca 511 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 35 | 4, 7 | isrhm 20363 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
| 36 | 1, 2, 34, 35 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 .rcmulr 17162 0gc0g 17343 Mndcmnd 18608 MndHom cmhm 18655 GrpHom cghm 19091 mulGrpcmgp 20025 1rcur 20066 Ringcrg 20118 RingHom crh 20354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mhm 18657 df-ghm 19092 df-mgp 20026 df-ur 20067 df-ring 20120 df-rhm 20357 |
| This theorem is referenced by: isrhmd 20373 rhmopp 20394 qusrhm 21183 rhmqusnsg 21192 mulgrhm 21384 asclrhm 21797 rhmquskerlem 33362 |
| Copyright terms: Public domain | W3C validator |