MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco1mhm Structured version   Visualization version   GIF version

Theorem pwsco1mhm 18715
Description: Right composition with a function on the index sets yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco1mhm.y 𝑌 = (𝑅s 𝐴)
pwsco1mhm.z 𝑍 = (𝑅s 𝐵)
pwsco1mhm.c 𝐶 = (Base‘𝑍)
pwsco1mhm.r (𝜑𝑅 ∈ Mnd)
pwsco1mhm.a (𝜑𝐴𝑉)
pwsco1mhm.b (𝜑𝐵𝑊)
pwsco1mhm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
pwsco1mhm (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
Distinct variable groups:   𝐶,𝑔   𝑔,𝑌   𝑔,𝑍   𝑔,𝐹   𝜑,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝐵(𝑔)   𝑅(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem pwsco1mhm
Dummy variables 𝑥 𝑧 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco1mhm.r . . 3 (𝜑𝑅 ∈ Mnd)
2 pwsco1mhm.b . . 3 (𝜑𝐵𝑊)
3 pwsco1mhm.z . . . 4 𝑍 = (𝑅s 𝐵)
43pwsmnd 18662 . . 3 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → 𝑍 ∈ Mnd)
51, 2, 4syl2anc 584 . 2 (𝜑𝑍 ∈ Mnd)
6 pwsco1mhm.a . . 3 (𝜑𝐴𝑉)
7 pwsco1mhm.y . . . 4 𝑌 = (𝑅s 𝐴)
87pwsmnd 18662 . . 3 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → 𝑌 ∈ Mnd)
91, 6, 8syl2anc 584 . 2 (𝜑𝑌 ∈ Mnd)
10 eqid 2732 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
11 pwsco1mhm.c . . . . . . . . 9 𝐶 = (Base‘𝑍)
123, 10, 11pwselbasb 17436 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → (𝑔𝐶𝑔:𝐵⟶(Base‘𝑅)))
131, 2, 12syl2anc 584 . . . . . . 7 (𝜑 → (𝑔𝐶𝑔:𝐵⟶(Base‘𝑅)))
1413biimpa 477 . . . . . 6 ((𝜑𝑔𝐶) → 𝑔:𝐵⟶(Base‘𝑅))
15 pwsco1mhm.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
1615adantr 481 . . . . . 6 ((𝜑𝑔𝐶) → 𝐹:𝐴𝐵)
17 fco 6741 . . . . . 6 ((𝑔:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → (𝑔𝐹):𝐴⟶(Base‘𝑅))
1814, 16, 17syl2anc 584 . . . . 5 ((𝜑𝑔𝐶) → (𝑔𝐹):𝐴⟶(Base‘𝑅))
19 eqid 2732 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
207, 10, 19pwselbasb 17436 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → ((𝑔𝐹) ∈ (Base‘𝑌) ↔ (𝑔𝐹):𝐴⟶(Base‘𝑅)))
211, 6, 20syl2anc 584 . . . . . 6 (𝜑 → ((𝑔𝐹) ∈ (Base‘𝑌) ↔ (𝑔𝐹):𝐴⟶(Base‘𝑅)))
2221adantr 481 . . . . 5 ((𝜑𝑔𝐶) → ((𝑔𝐹) ∈ (Base‘𝑌) ↔ (𝑔𝐹):𝐴⟶(Base‘𝑅)))
2318, 22mpbird 256 . . . 4 ((𝜑𝑔𝐶) → (𝑔𝐹) ∈ (Base‘𝑌))
2423fmpttd 7116 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)):𝐶⟶(Base‘𝑌))
256adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐴𝑉)
26 fvexd 6906 . . . . . . 7 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑧𝐴) → (𝑥‘(𝐹𝑧)) ∈ V)
27 fvexd 6906 . . . . . . 7 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑧𝐴) → (𝑦‘(𝐹𝑧)) ∈ V)
2815adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐴𝐵)
2928ffvelcdmda 7086 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
3028feqmptd 6960 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
311adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑅 ∈ Mnd)
322adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐵𝑊)
33 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
343, 10, 11, 31, 32, 33pwselbas 17437 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥:𝐵⟶(Base‘𝑅))
3534feqmptd 6960 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 = (𝑤𝐵 ↦ (𝑥𝑤)))
36 fveq2 6891 . . . . . . . 8 (𝑤 = (𝐹𝑧) → (𝑥𝑤) = (𝑥‘(𝐹𝑧)))
3729, 30, 35, 36fmptco 7129 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹) = (𝑧𝐴 ↦ (𝑥‘(𝐹𝑧))))
38 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
393, 10, 11, 31, 32, 38pwselbas 17437 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦:𝐵⟶(Base‘𝑅))
4039feqmptd 6960 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 = (𝑤𝐵 ↦ (𝑦𝑤)))
41 fveq2 6891 . . . . . . . 8 (𝑤 = (𝐹𝑧) → (𝑦𝑤) = (𝑦‘(𝐹𝑧)))
4229, 30, 40, 41fmptco 7129 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹) = (𝑧𝐴 ↦ (𝑦‘(𝐹𝑧))))
4325, 26, 27, 37, 42offval2 7692 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥𝐹) ∘f (+g𝑅)(𝑦𝐹)) = (𝑧𝐴 ↦ ((𝑥‘(𝐹𝑧))(+g𝑅)(𝑦‘(𝐹𝑧)))))
44 fco 6741 . . . . . . . . 9 ((𝑥:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → (𝑥𝐹):𝐴⟶(Base‘𝑅))
4534, 28, 44syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹):𝐴⟶(Base‘𝑅))
467, 10, 19pwselbasb 17436 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → ((𝑥𝐹) ∈ (Base‘𝑌) ↔ (𝑥𝐹):𝐴⟶(Base‘𝑅)))
4731, 25, 46syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥𝐹) ∈ (Base‘𝑌) ↔ (𝑥𝐹):𝐴⟶(Base‘𝑅)))
4845, 47mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹) ∈ (Base‘𝑌))
49 fco 6741 . . . . . . . . 9 ((𝑦:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → (𝑦𝐹):𝐴⟶(Base‘𝑅))
5039, 28, 49syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹):𝐴⟶(Base‘𝑅))
517, 10, 19pwselbasb 17436 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → ((𝑦𝐹) ∈ (Base‘𝑌) ↔ (𝑦𝐹):𝐴⟶(Base‘𝑅)))
5231, 25, 51syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑦𝐹) ∈ (Base‘𝑌) ↔ (𝑦𝐹):𝐴⟶(Base‘𝑅)))
5350, 52mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹) ∈ (Base‘𝑌))
54 eqid 2732 . . . . . . 7 (+g𝑅) = (+g𝑅)
55 eqid 2732 . . . . . . 7 (+g𝑌) = (+g𝑌)
567, 19, 31, 25, 48, 53, 54, 55pwsplusgval 17438 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥𝐹)(+g𝑌)(𝑦𝐹)) = ((𝑥𝐹) ∘f (+g𝑅)(𝑦𝐹)))
57 eqid 2732 . . . . . . . . 9 (+g𝑍) = (+g𝑍)
583, 11, 31, 32, 33, 38, 54, 57pwsplusgval 17438 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) = (𝑥f (+g𝑅)𝑦))
59 fvexd 6906 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑤𝐵) → (𝑥𝑤) ∈ V)
60 fvexd 6906 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑤𝐵) → (𝑦𝑤) ∈ V)
6132, 59, 60, 35, 40offval2 7692 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥f (+g𝑅)𝑦) = (𝑤𝐵 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6258, 61eqtrd 2772 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) = (𝑤𝐵 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6336, 41oveq12d 7429 . . . . . . 7 (𝑤 = (𝐹𝑧) → ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) = ((𝑥‘(𝐹𝑧))(+g𝑅)(𝑦‘(𝐹𝑧))))
6429, 30, 62, 63fmptco 7129 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) = (𝑧𝐴 ↦ ((𝑥‘(𝐹𝑧))(+g𝑅)(𝑦‘(𝐹𝑧)))))
6543, 56, 643eqtr4rd 2783 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) = ((𝑥𝐹)(+g𝑌)(𝑦𝐹)))
66 eqid 2732 . . . . . 6 (𝑔𝐶 ↦ (𝑔𝐹)) = (𝑔𝐶 ↦ (𝑔𝐹))
67 coeq1 5857 . . . . . 6 (𝑔 = (𝑥(+g𝑍)𝑦) → (𝑔𝐹) = ((𝑥(+g𝑍)𝑦) ∘ 𝐹))
6811, 57mndcl 18635 . . . . . . . 8 ((𝑍 ∈ Mnd ∧ 𝑥𝐶𝑦𝐶) → (𝑥(+g𝑍)𝑦) ∈ 𝐶)
69683expb 1120 . . . . . . 7 ((𝑍 ∈ Mnd ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) ∈ 𝐶)
705, 69sylan 580 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) ∈ 𝐶)
71 ovex 7444 . . . . . . 7 (𝑥(+g𝑍)𝑦) ∈ V
7215, 6fexd 7231 . . . . . . . 8 (𝜑𝐹 ∈ V)
7372adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 ∈ V)
74 coexg 7922 . . . . . . 7 (((𝑥(+g𝑍)𝑦) ∈ V ∧ 𝐹 ∈ V) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) ∈ V)
7571, 73, 74sylancr 587 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) ∈ V)
7666, 67, 70, 75fvmptd3 7021 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = ((𝑥(+g𝑍)𝑦) ∘ 𝐹))
77 coeq1 5857 . . . . . . 7 (𝑔 = 𝑥 → (𝑔𝐹) = (𝑥𝐹))
78 coexg 7922 . . . . . . . 8 ((𝑥𝐶𝐹 ∈ V) → (𝑥𝐹) ∈ V)
7933, 73, 78syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹) ∈ V)
8066, 77, 33, 79fvmptd3 7021 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥) = (𝑥𝐹))
81 coeq1 5857 . . . . . . 7 (𝑔 = 𝑦 → (𝑔𝐹) = (𝑦𝐹))
82 coexg 7922 . . . . . . . 8 ((𝑦𝐶𝐹 ∈ V) → (𝑦𝐹) ∈ V)
8338, 73, 82syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹) ∈ V)
8466, 81, 38, 83fvmptd3 7021 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦) = (𝑦𝐹))
8580, 84oveq12d 7429 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)) = ((𝑥𝐹)(+g𝑌)(𝑦𝐹)))
8665, 76, 853eqtr4d 2782 . . . 4 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)))
8786ralrimivva 3200 . . 3 (𝜑 → ∀𝑥𝐶𝑦𝐶 ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)))
88 coeq1 5857 . . . . 5 (𝑔 = (0g𝑍) → (𝑔𝐹) = ((0g𝑍) ∘ 𝐹))
89 eqid 2732 . . . . . . 7 (0g𝑍) = (0g𝑍)
9011, 89mndidcl 18642 . . . . . 6 (𝑍 ∈ Mnd → (0g𝑍) ∈ 𝐶)
915, 90syl 17 . . . . 5 (𝜑 → (0g𝑍) ∈ 𝐶)
92 coexg 7922 . . . . . 6 (((0g𝑍) ∈ 𝐶𝐹 ∈ V) → ((0g𝑍) ∘ 𝐹) ∈ V)
9391, 72, 92syl2anc 584 . . . . 5 (𝜑 → ((0g𝑍) ∘ 𝐹) ∈ V)
9466, 88, 91, 93fvmptd3 7021 . . . 4 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = ((0g𝑍) ∘ 𝐹))
953, 10, 11, 1, 2, 91pwselbas 17437 . . . . . . 7 (𝜑 → (0g𝑍):𝐵⟶(Base‘𝑅))
96 fco 6741 . . . . . . 7 (((0g𝑍):𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → ((0g𝑍) ∘ 𝐹):𝐴⟶(Base‘𝑅))
9795, 15, 96syl2anc 584 . . . . . 6 (𝜑 → ((0g𝑍) ∘ 𝐹):𝐴⟶(Base‘𝑅))
9897ffnd 6718 . . . . 5 (𝜑 → ((0g𝑍) ∘ 𝐹) Fn 𝐴)
99 fvexd 6906 . . . . . 6 (𝜑 → (0g𝑅) ∈ V)
100 fnconstg 6779 . . . . . 6 ((0g𝑅) ∈ V → (𝐴 × {(0g𝑅)}) Fn 𝐴)
10199, 100syl 17 . . . . 5 (𝜑 → (𝐴 × {(0g𝑅)}) Fn 𝐴)
102 eqid 2732 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1033, 102pws0g 18663 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → (𝐵 × {(0g𝑅)}) = (0g𝑍))
1041, 2, 103syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐵 × {(0g𝑅)}) = (0g𝑍))
105104fveq1d 6893 . . . . . . . 8 (𝜑 → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = ((0g𝑍)‘(𝐹𝑥)))
106105adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = ((0g𝑍)‘(𝐹𝑥)))
107 fvex 6904 . . . . . . . 8 (0g𝑅) ∈ V
10815ffvelcdmda 7086 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
109 fvconst2g 7205 . . . . . . . 8 (((0g𝑅) ∈ V ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = (0g𝑅))
110107, 108, 109sylancr 587 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = (0g𝑅))
111106, 110eqtr3d 2774 . . . . . 6 ((𝜑𝑥𝐴) → ((0g𝑍)‘(𝐹𝑥)) = (0g𝑅))
112 fvco3 6990 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → (((0g𝑍) ∘ 𝐹)‘𝑥) = ((0g𝑍)‘(𝐹𝑥)))
11315, 112sylan 580 . . . . . 6 ((𝜑𝑥𝐴) → (((0g𝑍) ∘ 𝐹)‘𝑥) = ((0g𝑍)‘(𝐹𝑥)))
114 fvconst2g 7205 . . . . . . 7 (((0g𝑅) ∈ V ∧ 𝑥𝐴) → ((𝐴 × {(0g𝑅)})‘𝑥) = (0g𝑅))
11599, 114sylan 580 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐴 × {(0g𝑅)})‘𝑥) = (0g𝑅))
116111, 113, 1153eqtr4d 2782 . . . . 5 ((𝜑𝑥𝐴) → (((0g𝑍) ∘ 𝐹)‘𝑥) = ((𝐴 × {(0g𝑅)})‘𝑥))
11798, 101, 116eqfnfvd 7035 . . . 4 (𝜑 → ((0g𝑍) ∘ 𝐹) = (𝐴 × {(0g𝑅)}))
1187, 102pws0g 18663 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → (𝐴 × {(0g𝑅)}) = (0g𝑌))
1191, 6, 118syl2anc 584 . . . 4 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝑌))
12094, 117, 1193eqtrd 2776 . . 3 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = (0g𝑌))
12124, 87, 1203jca 1128 . 2 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹)):𝐶⟶(Base‘𝑌) ∧ ∀𝑥𝐶𝑦𝐶 ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)) ∧ ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = (0g𝑌)))
122 eqid 2732 . . 3 (0g𝑌) = (0g𝑌)
12311, 19, 57, 55, 89, 122ismhm 18675 . 2 ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌) ↔ ((𝑍 ∈ Mnd ∧ 𝑌 ∈ Mnd) ∧ ((𝑔𝐶 ↦ (𝑔𝐹)):𝐶⟶(Base‘𝑌) ∧ ∀𝑥𝐶𝑦𝐶 ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)) ∧ ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = (0g𝑌))))
1245, 9, 121, 123syl21anbrc 1344 1 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  {csn 4628  cmpt 5231   × cxp 5674  ccom 5680   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7411  f cof 7670  Basecbs 17146  +gcplusg 17199  0gc0g 17387  s cpws 17394  Mndcmnd 18627   MndHom cmhm 18671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-fz 13487  df-struct 17082  df-slot 17117  df-ndx 17129  df-base 17147  df-plusg 17212  df-mulr 17213  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-hom 17223  df-cco 17224  df-0g 17389  df-prds 17395  df-pws 17397  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-mhm 18673
This theorem is referenced by:  pwsco1rhm  20281
  Copyright terms: Public domain W3C validator