Step | Hyp | Ref
| Expression |
1 | | pwsco1mhm.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Mnd) |
2 | | pwsco1mhm.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
3 | | pwsco1mhm.z |
. . . . 5
⊢ 𝑍 = (𝑅 ↑s 𝐵) |
4 | 3 | pwsmnd 17679 |
. . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊) → 𝑍 ∈ Mnd) |
5 | 1, 2, 4 | syl2anc 581 |
. . 3
⊢ (𝜑 → 𝑍 ∈ Mnd) |
6 | | pwsco1mhm.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | | pwsco1mhm.y |
. . . . 5
⊢ 𝑌 = (𝑅 ↑s 𝐴) |
8 | 7 | pwsmnd 17679 |
. . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ Mnd) |
9 | 1, 6, 8 | syl2anc 581 |
. . 3
⊢ (𝜑 → 𝑌 ∈ Mnd) |
10 | 5, 9 | jca 509 |
. 2
⊢ (𝜑 → (𝑍 ∈ Mnd ∧ 𝑌 ∈ Mnd)) |
11 | | eqid 2826 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
12 | | pwsco1mhm.c |
. . . . . . . . 9
⊢ 𝐶 = (Base‘𝑍) |
13 | 3, 11, 12 | pwselbasb 16502 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊) → (𝑔 ∈ 𝐶 ↔ 𝑔:𝐵⟶(Base‘𝑅))) |
14 | 1, 2, 13 | syl2anc 581 |
. . . . . . 7
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↔ 𝑔:𝐵⟶(Base‘𝑅))) |
15 | 14 | biimpa 470 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝑔:𝐵⟶(Base‘𝑅)) |
16 | | pwsco1mhm.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
17 | 16 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → 𝐹:𝐴⟶𝐵) |
18 | | fco 6296 |
. . . . . 6
⊢ ((𝑔:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴⟶𝐵) → (𝑔 ∘ 𝐹):𝐴⟶(Base‘𝑅)) |
19 | 15, 17, 18 | syl2anc 581 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → (𝑔 ∘ 𝐹):𝐴⟶(Base‘𝑅)) |
20 | | eqid 2826 |
. . . . . . . 8
⊢
(Base‘𝑌) =
(Base‘𝑌) |
21 | 7, 11, 20 | pwselbasb 16502 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → ((𝑔 ∘ 𝐹) ∈ (Base‘𝑌) ↔ (𝑔 ∘ 𝐹):𝐴⟶(Base‘𝑅))) |
22 | 1, 6, 21 | syl2anc 581 |
. . . . . 6
⊢ (𝜑 → ((𝑔 ∘ 𝐹) ∈ (Base‘𝑌) ↔ (𝑔 ∘ 𝐹):𝐴⟶(Base‘𝑅))) |
23 | 22 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → ((𝑔 ∘ 𝐹) ∈ (Base‘𝑌) ↔ (𝑔 ∘ 𝐹):𝐴⟶(Base‘𝑅))) |
24 | 19, 23 | mpbird 249 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ 𝐶) → (𝑔 ∘ 𝐹) ∈ (Base‘𝑌)) |
25 | 24 | fmpttd 6635 |
. . 3
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)):𝐶⟶(Base‘𝑌)) |
26 | 6 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐴 ∈ 𝑉) |
27 | | fvexd 6449 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ 𝑧 ∈ 𝐴) → (𝑥‘(𝐹‘𝑧)) ∈ V) |
28 | | fvexd 6449 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ 𝑧 ∈ 𝐴) → (𝑦‘(𝐹‘𝑧)) ∈ V) |
29 | 16 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐹:𝐴⟶𝐵) |
30 | 29 | ffvelrnda 6609 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝐵) |
31 | 29 | feqmptd 6497 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐹 = (𝑧 ∈ 𝐴 ↦ (𝐹‘𝑧))) |
32 | 1 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑅 ∈ Mnd) |
33 | 2 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐵 ∈ 𝑊) |
34 | | simprl 789 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑥 ∈ 𝐶) |
35 | 3, 11, 12, 32, 33, 34 | pwselbas 16503 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑥:𝐵⟶(Base‘𝑅)) |
36 | 35 | feqmptd 6497 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑥 = (𝑤 ∈ 𝐵 ↦ (𝑥‘𝑤))) |
37 | | fveq2 6434 |
. . . . . . . 8
⊢ (𝑤 = (𝐹‘𝑧) → (𝑥‘𝑤) = (𝑥‘(𝐹‘𝑧))) |
38 | 30, 31, 36, 37 | fmptco 6647 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 ∘ 𝐹) = (𝑧 ∈ 𝐴 ↦ (𝑥‘(𝐹‘𝑧)))) |
39 | | simprr 791 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑦 ∈ 𝐶) |
40 | 3, 11, 12, 32, 33, 39 | pwselbas 16503 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑦:𝐵⟶(Base‘𝑅)) |
41 | 40 | feqmptd 6497 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝑦 = (𝑤 ∈ 𝐵 ↦ (𝑦‘𝑤))) |
42 | | fveq2 6434 |
. . . . . . . 8
⊢ (𝑤 = (𝐹‘𝑧) → (𝑦‘𝑤) = (𝑦‘(𝐹‘𝑧))) |
43 | 30, 31, 41, 42 | fmptco 6647 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑦 ∘ 𝐹) = (𝑧 ∈ 𝐴 ↦ (𝑦‘(𝐹‘𝑧)))) |
44 | 26, 27, 28, 38, 43 | offval2 7175 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑥 ∘ 𝐹) ∘𝑓
(+g‘𝑅)(𝑦 ∘ 𝐹)) = (𝑧 ∈ 𝐴 ↦ ((𝑥‘(𝐹‘𝑧))(+g‘𝑅)(𝑦‘(𝐹‘𝑧))))) |
45 | | fco 6296 |
. . . . . . . . 9
⊢ ((𝑥:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴⟶𝐵) → (𝑥 ∘ 𝐹):𝐴⟶(Base‘𝑅)) |
46 | 35, 29, 45 | syl2anc 581 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 ∘ 𝐹):𝐴⟶(Base‘𝑅)) |
47 | 7, 11, 20 | pwselbasb 16502 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → ((𝑥 ∘ 𝐹) ∈ (Base‘𝑌) ↔ (𝑥 ∘ 𝐹):𝐴⟶(Base‘𝑅))) |
48 | 32, 26, 47 | syl2anc 581 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑥 ∘ 𝐹) ∈ (Base‘𝑌) ↔ (𝑥 ∘ 𝐹):𝐴⟶(Base‘𝑅))) |
49 | 46, 48 | mpbird 249 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 ∘ 𝐹) ∈ (Base‘𝑌)) |
50 | | fco 6296 |
. . . . . . . . 9
⊢ ((𝑦:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴⟶𝐵) → (𝑦 ∘ 𝐹):𝐴⟶(Base‘𝑅)) |
51 | 40, 29, 50 | syl2anc 581 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑦 ∘ 𝐹):𝐴⟶(Base‘𝑅)) |
52 | 7, 11, 20 | pwselbasb 16502 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → ((𝑦 ∘ 𝐹) ∈ (Base‘𝑌) ↔ (𝑦 ∘ 𝐹):𝐴⟶(Base‘𝑅))) |
53 | 32, 26, 52 | syl2anc 581 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑦 ∘ 𝐹) ∈ (Base‘𝑌) ↔ (𝑦 ∘ 𝐹):𝐴⟶(Base‘𝑅))) |
54 | 51, 53 | mpbird 249 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑦 ∘ 𝐹) ∈ (Base‘𝑌)) |
55 | | eqid 2826 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
56 | | eqid 2826 |
. . . . . . 7
⊢
(+g‘𝑌) = (+g‘𝑌) |
57 | 7, 20, 32, 26, 49, 54, 55, 56 | pwsplusgval 16504 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑥 ∘ 𝐹)(+g‘𝑌)(𝑦 ∘ 𝐹)) = ((𝑥 ∘ 𝐹) ∘𝑓
(+g‘𝑅)(𝑦 ∘ 𝐹))) |
58 | | eqid 2826 |
. . . . . . . . 9
⊢
(+g‘𝑍) = (+g‘𝑍) |
59 | 3, 12, 32, 33, 34, 39, 55, 58 | pwsplusgval 16504 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝑍)𝑦) = (𝑥 ∘𝑓
(+g‘𝑅)𝑦)) |
60 | | fvexd 6449 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ 𝑤 ∈ 𝐵) → (𝑥‘𝑤) ∈ V) |
61 | | fvexd 6449 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) ∧ 𝑤 ∈ 𝐵) → (𝑦‘𝑤) ∈ V) |
62 | 33, 60, 61, 36, 41 | offval2 7175 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 ∘𝑓
(+g‘𝑅)𝑦) = (𝑤 ∈ 𝐵 ↦ ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) |
63 | 59, 62 | eqtrd 2862 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝑍)𝑦) = (𝑤 ∈ 𝐵 ↦ ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)))) |
64 | 37, 42 | oveq12d 6924 |
. . . . . . 7
⊢ (𝑤 = (𝐹‘𝑧) → ((𝑥‘𝑤)(+g‘𝑅)(𝑦‘𝑤)) = ((𝑥‘(𝐹‘𝑧))(+g‘𝑅)(𝑦‘(𝐹‘𝑧)))) |
65 | 30, 31, 63, 64 | fmptco 6647 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑥(+g‘𝑍)𝑦) ∘ 𝐹) = (𝑧 ∈ 𝐴 ↦ ((𝑥‘(𝐹‘𝑧))(+g‘𝑅)(𝑦‘(𝐹‘𝑧))))) |
66 | 44, 57, 65 | 3eqtr4rd 2873 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑥(+g‘𝑍)𝑦) ∘ 𝐹) = ((𝑥 ∘ 𝐹)(+g‘𝑌)(𝑦 ∘ 𝐹))) |
67 | | eqid 2826 |
. . . . . 6
⊢ (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) = (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) |
68 | | coeq1 5513 |
. . . . . 6
⊢ (𝑔 = (𝑥(+g‘𝑍)𝑦) → (𝑔 ∘ 𝐹) = ((𝑥(+g‘𝑍)𝑦) ∘ 𝐹)) |
69 | 12, 58 | mndcl 17655 |
. . . . . . . 8
⊢ ((𝑍 ∈ Mnd ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥(+g‘𝑍)𝑦) ∈ 𝐶) |
70 | 69 | 3expb 1155 |
. . . . . . 7
⊢ ((𝑍 ∈ Mnd ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝑍)𝑦) ∈ 𝐶) |
71 | 5, 70 | sylan 577 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝑍)𝑦) ∈ 𝐶) |
72 | | ovex 6938 |
. . . . . . 7
⊢ (𝑥(+g‘𝑍)𝑦) ∈ V |
73 | | fex 6746 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) |
74 | 16, 6, 73 | syl2anc 581 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ V) |
75 | 74 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → 𝐹 ∈ V) |
76 | | coexg 7380 |
. . . . . . 7
⊢ (((𝑥(+g‘𝑍)𝑦) ∈ V ∧ 𝐹 ∈ V) → ((𝑥(+g‘𝑍)𝑦) ∘ 𝐹) ∈ V) |
77 | 72, 75, 76 | sylancr 583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑥(+g‘𝑍)𝑦) ∘ 𝐹) ∈ V) |
78 | 67, 68, 71, 77 | fvmptd3 6551 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘(𝑥(+g‘𝑍)𝑦)) = ((𝑥(+g‘𝑍)𝑦) ∘ 𝐹)) |
79 | | coeq1 5513 |
. . . . . . 7
⊢ (𝑔 = 𝑥 → (𝑔 ∘ 𝐹) = (𝑥 ∘ 𝐹)) |
80 | | coexg 7380 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐶 ∧ 𝐹 ∈ V) → (𝑥 ∘ 𝐹) ∈ V) |
81 | 34, 75, 80 | syl2anc 581 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥 ∘ 𝐹) ∈ V) |
82 | 67, 79, 34, 81 | fvmptd3 6551 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑥) = (𝑥 ∘ 𝐹)) |
83 | | coeq1 5513 |
. . . . . . 7
⊢ (𝑔 = 𝑦 → (𝑔 ∘ 𝐹) = (𝑦 ∘ 𝐹)) |
84 | | coexg 7380 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐶 ∧ 𝐹 ∈ V) → (𝑦 ∘ 𝐹) ∈ V) |
85 | 39, 75, 84 | syl2anc 581 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑦 ∘ 𝐹) ∈ V) |
86 | 67, 83, 39, 85 | fvmptd3 6551 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑦) = (𝑦 ∘ 𝐹)) |
87 | 82, 86 | oveq12d 6924 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑥)(+g‘𝑌)((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑦)) = ((𝑥 ∘ 𝐹)(+g‘𝑌)(𝑦 ∘ 𝐹))) |
88 | 66, 78, 87 | 3eqtr4d 2872 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘(𝑥(+g‘𝑍)𝑦)) = (((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑥)(+g‘𝑌)((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑦))) |
89 | 88 | ralrimivva 3181 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘(𝑥(+g‘𝑍)𝑦)) = (((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑥)(+g‘𝑌)((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑦))) |
90 | | coeq1 5513 |
. . . . 5
⊢ (𝑔 = (0g‘𝑍) → (𝑔 ∘ 𝐹) = ((0g‘𝑍) ∘ 𝐹)) |
91 | | eqid 2826 |
. . . . . . 7
⊢
(0g‘𝑍) = (0g‘𝑍) |
92 | 12, 91 | mndidcl 17662 |
. . . . . 6
⊢ (𝑍 ∈ Mnd →
(0g‘𝑍)
∈ 𝐶) |
93 | 5, 92 | syl 17 |
. . . . 5
⊢ (𝜑 → (0g‘𝑍) ∈ 𝐶) |
94 | | coexg 7380 |
. . . . . 6
⊢
(((0g‘𝑍) ∈ 𝐶 ∧ 𝐹 ∈ V) →
((0g‘𝑍)
∘ 𝐹) ∈
V) |
95 | 93, 74, 94 | syl2anc 581 |
. . . . 5
⊢ (𝜑 →
((0g‘𝑍)
∘ 𝐹) ∈
V) |
96 | 67, 90, 93, 95 | fvmptd3 6551 |
. . . 4
⊢ (𝜑 → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘(0g‘𝑍)) = ((0g‘𝑍) ∘ 𝐹)) |
97 | 3, 11, 12, 1, 2, 93 | pwselbas 16503 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑍):𝐵⟶(Base‘𝑅)) |
98 | | fco 6296 |
. . . . . . 7
⊢
(((0g‘𝑍):𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴⟶𝐵) → ((0g‘𝑍) ∘ 𝐹):𝐴⟶(Base‘𝑅)) |
99 | 97, 16, 98 | syl2anc 581 |
. . . . . 6
⊢ (𝜑 →
((0g‘𝑍)
∘ 𝐹):𝐴⟶(Base‘𝑅)) |
100 | 99 | ffnd 6280 |
. . . . 5
⊢ (𝜑 →
((0g‘𝑍)
∘ 𝐹) Fn 𝐴) |
101 | | fvexd 6449 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
102 | | fnconstg 6331 |
. . . . . 6
⊢
((0g‘𝑅) ∈ V → (𝐴 × {(0g‘𝑅)}) Fn 𝐴) |
103 | 101, 102 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐴 × {(0g‘𝑅)}) Fn 𝐴) |
104 | | eqid 2826 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
105 | 3, 104 | pws0g 17680 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊) → (𝐵 × {(0g‘𝑅)}) = (0g‘𝑍)) |
106 | 1, 2, 105 | syl2anc 581 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 × {(0g‘𝑅)}) = (0g‘𝑍)) |
107 | 106 | fveq1d 6436 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 × {(0g‘𝑅)})‘(𝐹‘𝑥)) = ((0g‘𝑍)‘(𝐹‘𝑥))) |
108 | 107 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 × {(0g‘𝑅)})‘(𝐹‘𝑥)) = ((0g‘𝑍)‘(𝐹‘𝑥))) |
109 | | fvex 6447 |
. . . . . . . 8
⊢
(0g‘𝑅) ∈ V |
110 | 16 | ffvelrnda 6609 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
111 | | fvconst2g 6724 |
. . . . . . . 8
⊢
(((0g‘𝑅) ∈ V ∧ (𝐹‘𝑥) ∈ 𝐵) → ((𝐵 × {(0g‘𝑅)})‘(𝐹‘𝑥)) = (0g‘𝑅)) |
112 | 109, 110,
111 | sylancr 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 × {(0g‘𝑅)})‘(𝐹‘𝑥)) = (0g‘𝑅)) |
113 | 108, 112 | eqtr3d 2864 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((0g‘𝑍)‘(𝐹‘𝑥)) = (0g‘𝑅)) |
114 | | fvco3 6523 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (((0g‘𝑍) ∘ 𝐹)‘𝑥) = ((0g‘𝑍)‘(𝐹‘𝑥))) |
115 | 16, 114 | sylan 577 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((0g‘𝑍) ∘ 𝐹)‘𝑥) = ((0g‘𝑍)‘(𝐹‘𝑥))) |
116 | | fvconst2g 6724 |
. . . . . . 7
⊢
(((0g‘𝑅) ∈ V ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {(0g‘𝑅)})‘𝑥) = (0g‘𝑅)) |
117 | 101, 116 | sylan 577 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {(0g‘𝑅)})‘𝑥) = (0g‘𝑅)) |
118 | 113, 115,
117 | 3eqtr4d 2872 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((0g‘𝑍) ∘ 𝐹)‘𝑥) = ((𝐴 × {(0g‘𝑅)})‘𝑥)) |
119 | 100, 103,
118 | eqfnfvd 6564 |
. . . 4
⊢ (𝜑 →
((0g‘𝑍)
∘ 𝐹) = (𝐴 ×
{(0g‘𝑅)})) |
120 | 7, 104 | pws0g 17680 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐴 × {(0g‘𝑅)}) = (0g‘𝑌)) |
121 | 1, 6, 120 | syl2anc 581 |
. . . 4
⊢ (𝜑 → (𝐴 × {(0g‘𝑅)}) = (0g‘𝑌)) |
122 | 96, 119, 121 | 3eqtrd 2866 |
. . 3
⊢ (𝜑 → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘(0g‘𝑍)) = (0g‘𝑌)) |
123 | 25, 89, 122 | 3jca 1164 |
. 2
⊢ (𝜑 → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)):𝐶⟶(Base‘𝑌) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘(𝑥(+g‘𝑍)𝑦)) = (((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑥)(+g‘𝑌)((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑦)) ∧ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘(0g‘𝑍)) = (0g‘𝑌))) |
124 | | eqid 2826 |
. . 3
⊢
(0g‘𝑌) = (0g‘𝑌) |
125 | 12, 20, 58, 56, 91, 124 | ismhm 17691 |
. 2
⊢ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 MndHom 𝑌) ↔ ((𝑍 ∈ Mnd ∧ 𝑌 ∈ Mnd) ∧ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)):𝐶⟶(Base‘𝑌) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘(𝑥(+g‘𝑍)𝑦)) = (((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑥)(+g‘𝑌)((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘𝑦)) ∧ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹))‘(0g‘𝑍)) = (0g‘𝑌)))) |
126 | 10, 123, 125 | sylanbrc 580 |
1
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 MndHom 𝑌)) |