MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco1mhm Structured version   Visualization version   GIF version

Theorem pwsco1mhm 18713
Description: Right composition with a function on the index sets yields a monoid homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco1mhm.y 𝑌 = (𝑅s 𝐴)
pwsco1mhm.z 𝑍 = (𝑅s 𝐵)
pwsco1mhm.c 𝐶 = (Base‘𝑍)
pwsco1mhm.r (𝜑𝑅 ∈ Mnd)
pwsco1mhm.a (𝜑𝐴𝑉)
pwsco1mhm.b (𝜑𝐵𝑊)
pwsco1mhm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
pwsco1mhm (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
Distinct variable groups:   𝐶,𝑔   𝑔,𝑌   𝑔,𝑍   𝑔,𝐹   𝜑,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝐵(𝑔)   𝑅(𝑔)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem pwsco1mhm
Dummy variables 𝑥 𝑧 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco1mhm.r . . 3 (𝜑𝑅 ∈ Mnd)
2 pwsco1mhm.b . . 3 (𝜑𝐵𝑊)
3 pwsco1mhm.z . . . 4 𝑍 = (𝑅s 𝐵)
43pwsmnd 18660 . . 3 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → 𝑍 ∈ Mnd)
51, 2, 4syl2anc 585 . 2 (𝜑𝑍 ∈ Mnd)
6 pwsco1mhm.a . . 3 (𝜑𝐴𝑉)
7 pwsco1mhm.y . . . 4 𝑌 = (𝑅s 𝐴)
87pwsmnd 18660 . . 3 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → 𝑌 ∈ Mnd)
91, 6, 8syl2anc 585 . 2 (𝜑𝑌 ∈ Mnd)
10 eqid 2733 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
11 pwsco1mhm.c . . . . . . . . 9 𝐶 = (Base‘𝑍)
123, 10, 11pwselbasb 17434 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → (𝑔𝐶𝑔:𝐵⟶(Base‘𝑅)))
131, 2, 12syl2anc 585 . . . . . . 7 (𝜑 → (𝑔𝐶𝑔:𝐵⟶(Base‘𝑅)))
1413biimpa 478 . . . . . 6 ((𝜑𝑔𝐶) → 𝑔:𝐵⟶(Base‘𝑅))
15 pwsco1mhm.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
1615adantr 482 . . . . . 6 ((𝜑𝑔𝐶) → 𝐹:𝐴𝐵)
17 fco 6742 . . . . . 6 ((𝑔:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → (𝑔𝐹):𝐴⟶(Base‘𝑅))
1814, 16, 17syl2anc 585 . . . . 5 ((𝜑𝑔𝐶) → (𝑔𝐹):𝐴⟶(Base‘𝑅))
19 eqid 2733 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
207, 10, 19pwselbasb 17434 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → ((𝑔𝐹) ∈ (Base‘𝑌) ↔ (𝑔𝐹):𝐴⟶(Base‘𝑅)))
211, 6, 20syl2anc 585 . . . . . 6 (𝜑 → ((𝑔𝐹) ∈ (Base‘𝑌) ↔ (𝑔𝐹):𝐴⟶(Base‘𝑅)))
2221adantr 482 . . . . 5 ((𝜑𝑔𝐶) → ((𝑔𝐹) ∈ (Base‘𝑌) ↔ (𝑔𝐹):𝐴⟶(Base‘𝑅)))
2318, 22mpbird 257 . . . 4 ((𝜑𝑔𝐶) → (𝑔𝐹) ∈ (Base‘𝑌))
2423fmpttd 7115 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)):𝐶⟶(Base‘𝑌))
256adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐴𝑉)
26 fvexd 6907 . . . . . . 7 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑧𝐴) → (𝑥‘(𝐹𝑧)) ∈ V)
27 fvexd 6907 . . . . . . 7 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑧𝐴) → (𝑦‘(𝐹𝑧)) ∈ V)
2815adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐹:𝐴𝐵)
2928ffvelcdmda 7087 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
3028feqmptd 6961 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 = (𝑧𝐴 ↦ (𝐹𝑧)))
311adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑅 ∈ Mnd)
322adantr 482 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐵𝑊)
33 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
343, 10, 11, 31, 32, 33pwselbas 17435 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥:𝐵⟶(Base‘𝑅))
3534feqmptd 6961 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 = (𝑤𝐵 ↦ (𝑥𝑤)))
36 fveq2 6892 . . . . . . . 8 (𝑤 = (𝐹𝑧) → (𝑥𝑤) = (𝑥‘(𝐹𝑧)))
3729, 30, 35, 36fmptco 7127 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹) = (𝑧𝐴 ↦ (𝑥‘(𝐹𝑧))))
38 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
393, 10, 11, 31, 32, 38pwselbas 17435 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦:𝐵⟶(Base‘𝑅))
4039feqmptd 6961 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 = (𝑤𝐵 ↦ (𝑦𝑤)))
41 fveq2 6892 . . . . . . . 8 (𝑤 = (𝐹𝑧) → (𝑦𝑤) = (𝑦‘(𝐹𝑧)))
4229, 30, 40, 41fmptco 7127 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹) = (𝑧𝐴 ↦ (𝑦‘(𝐹𝑧))))
4325, 26, 27, 37, 42offval2 7690 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥𝐹) ∘f (+g𝑅)(𝑦𝐹)) = (𝑧𝐴 ↦ ((𝑥‘(𝐹𝑧))(+g𝑅)(𝑦‘(𝐹𝑧)))))
44 fco 6742 . . . . . . . . 9 ((𝑥:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → (𝑥𝐹):𝐴⟶(Base‘𝑅))
4534, 28, 44syl2anc 585 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹):𝐴⟶(Base‘𝑅))
467, 10, 19pwselbasb 17434 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → ((𝑥𝐹) ∈ (Base‘𝑌) ↔ (𝑥𝐹):𝐴⟶(Base‘𝑅)))
4731, 25, 46syl2anc 585 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥𝐹) ∈ (Base‘𝑌) ↔ (𝑥𝐹):𝐴⟶(Base‘𝑅)))
4845, 47mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹) ∈ (Base‘𝑌))
49 fco 6742 . . . . . . . . 9 ((𝑦:𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → (𝑦𝐹):𝐴⟶(Base‘𝑅))
5039, 28, 49syl2anc 585 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹):𝐴⟶(Base‘𝑅))
517, 10, 19pwselbasb 17434 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → ((𝑦𝐹) ∈ (Base‘𝑌) ↔ (𝑦𝐹):𝐴⟶(Base‘𝑅)))
5231, 25, 51syl2anc 585 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑦𝐹) ∈ (Base‘𝑌) ↔ (𝑦𝐹):𝐴⟶(Base‘𝑅)))
5350, 52mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹) ∈ (Base‘𝑌))
54 eqid 2733 . . . . . . 7 (+g𝑅) = (+g𝑅)
55 eqid 2733 . . . . . . 7 (+g𝑌) = (+g𝑌)
567, 19, 31, 25, 48, 53, 54, 55pwsplusgval 17436 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥𝐹)(+g𝑌)(𝑦𝐹)) = ((𝑥𝐹) ∘f (+g𝑅)(𝑦𝐹)))
57 eqid 2733 . . . . . . . . 9 (+g𝑍) = (+g𝑍)
583, 11, 31, 32, 33, 38, 54, 57pwsplusgval 17436 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) = (𝑥f (+g𝑅)𝑦))
59 fvexd 6907 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑤𝐵) → (𝑥𝑤) ∈ V)
60 fvexd 6907 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐶𝑦𝐶)) ∧ 𝑤𝐵) → (𝑦𝑤) ∈ V)
6132, 59, 60, 35, 40offval2 7690 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥f (+g𝑅)𝑦) = (𝑤𝐵 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6258, 61eqtrd 2773 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) = (𝑤𝐵 ↦ ((𝑥𝑤)(+g𝑅)(𝑦𝑤))))
6336, 41oveq12d 7427 . . . . . . 7 (𝑤 = (𝐹𝑧) → ((𝑥𝑤)(+g𝑅)(𝑦𝑤)) = ((𝑥‘(𝐹𝑧))(+g𝑅)(𝑦‘(𝐹𝑧))))
6429, 30, 62, 63fmptco 7127 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) = (𝑧𝐴 ↦ ((𝑥‘(𝐹𝑧))(+g𝑅)(𝑦‘(𝐹𝑧)))))
6543, 56, 643eqtr4rd 2784 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) = ((𝑥𝐹)(+g𝑌)(𝑦𝐹)))
66 eqid 2733 . . . . . 6 (𝑔𝐶 ↦ (𝑔𝐹)) = (𝑔𝐶 ↦ (𝑔𝐹))
67 coeq1 5858 . . . . . 6 (𝑔 = (𝑥(+g𝑍)𝑦) → (𝑔𝐹) = ((𝑥(+g𝑍)𝑦) ∘ 𝐹))
6811, 57mndcl 18633 . . . . . . . 8 ((𝑍 ∈ Mnd ∧ 𝑥𝐶𝑦𝐶) → (𝑥(+g𝑍)𝑦) ∈ 𝐶)
69683expb 1121 . . . . . . 7 ((𝑍 ∈ Mnd ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) ∈ 𝐶)
705, 69sylan 581 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝑍)𝑦) ∈ 𝐶)
71 ovex 7442 . . . . . . 7 (𝑥(+g𝑍)𝑦) ∈ V
7215, 6fexd 7229 . . . . . . . 8 (𝜑𝐹 ∈ V)
7372adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → 𝐹 ∈ V)
74 coexg 7920 . . . . . . 7 (((𝑥(+g𝑍)𝑦) ∈ V ∧ 𝐹 ∈ V) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) ∈ V)
7571, 73, 74sylancr 588 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑥(+g𝑍)𝑦) ∘ 𝐹) ∈ V)
7666, 67, 70, 75fvmptd3 7022 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = ((𝑥(+g𝑍)𝑦) ∘ 𝐹))
77 coeq1 5858 . . . . . . 7 (𝑔 = 𝑥 → (𝑔𝐹) = (𝑥𝐹))
78 coexg 7920 . . . . . . . 8 ((𝑥𝐶𝐹 ∈ V) → (𝑥𝐹) ∈ V)
7933, 73, 78syl2anc 585 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐹) ∈ V)
8066, 77, 33, 79fvmptd3 7022 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥) = (𝑥𝐹))
81 coeq1 5858 . . . . . . 7 (𝑔 = 𝑦 → (𝑔𝐹) = (𝑦𝐹))
82 coexg 7920 . . . . . . . 8 ((𝑦𝐶𝐹 ∈ V) → (𝑦𝐹) ∈ V)
8338, 73, 82syl2anc 585 . . . . . . 7 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑦𝐹) ∈ V)
8466, 81, 38, 83fvmptd3 7022 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦) = (𝑦𝐹))
8580, 84oveq12d 7427 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)) = ((𝑥𝐹)(+g𝑌)(𝑦𝐹)))
8665, 76, 853eqtr4d 2783 . . . 4 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)))
8786ralrimivva 3201 . . 3 (𝜑 → ∀𝑥𝐶𝑦𝐶 ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)))
88 coeq1 5858 . . . . 5 (𝑔 = (0g𝑍) → (𝑔𝐹) = ((0g𝑍) ∘ 𝐹))
89 eqid 2733 . . . . . . 7 (0g𝑍) = (0g𝑍)
9011, 89mndidcl 18640 . . . . . 6 (𝑍 ∈ Mnd → (0g𝑍) ∈ 𝐶)
915, 90syl 17 . . . . 5 (𝜑 → (0g𝑍) ∈ 𝐶)
92 coexg 7920 . . . . . 6 (((0g𝑍) ∈ 𝐶𝐹 ∈ V) → ((0g𝑍) ∘ 𝐹) ∈ V)
9391, 72, 92syl2anc 585 . . . . 5 (𝜑 → ((0g𝑍) ∘ 𝐹) ∈ V)
9466, 88, 91, 93fvmptd3 7022 . . . 4 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = ((0g𝑍) ∘ 𝐹))
953, 10, 11, 1, 2, 91pwselbas 17435 . . . . . . 7 (𝜑 → (0g𝑍):𝐵⟶(Base‘𝑅))
96 fco 6742 . . . . . . 7 (((0g𝑍):𝐵⟶(Base‘𝑅) ∧ 𝐹:𝐴𝐵) → ((0g𝑍) ∘ 𝐹):𝐴⟶(Base‘𝑅))
9795, 15, 96syl2anc 585 . . . . . 6 (𝜑 → ((0g𝑍) ∘ 𝐹):𝐴⟶(Base‘𝑅))
9897ffnd 6719 . . . . 5 (𝜑 → ((0g𝑍) ∘ 𝐹) Fn 𝐴)
99 fvexd 6907 . . . . . 6 (𝜑 → (0g𝑅) ∈ V)
100 fnconstg 6780 . . . . . 6 ((0g𝑅) ∈ V → (𝐴 × {(0g𝑅)}) Fn 𝐴)
10199, 100syl 17 . . . . 5 (𝜑 → (𝐴 × {(0g𝑅)}) Fn 𝐴)
102 eqid 2733 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1033, 102pws0g 18661 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → (𝐵 × {(0g𝑅)}) = (0g𝑍))
1041, 2, 103syl2anc 585 . . . . . . . . 9 (𝜑 → (𝐵 × {(0g𝑅)}) = (0g𝑍))
105104fveq1d 6894 . . . . . . . 8 (𝜑 → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = ((0g𝑍)‘(𝐹𝑥)))
106105adantr 482 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = ((0g𝑍)‘(𝐹𝑥)))
107 fvex 6905 . . . . . . . 8 (0g𝑅) ∈ V
10815ffvelcdmda 7087 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
109 fvconst2g 7203 . . . . . . . 8 (((0g𝑅) ∈ V ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = (0g𝑅))
110107, 108, 109sylancr 588 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝐵 × {(0g𝑅)})‘(𝐹𝑥)) = (0g𝑅))
111106, 110eqtr3d 2775 . . . . . 6 ((𝜑𝑥𝐴) → ((0g𝑍)‘(𝐹𝑥)) = (0g𝑅))
112 fvco3 6991 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → (((0g𝑍) ∘ 𝐹)‘𝑥) = ((0g𝑍)‘(𝐹𝑥)))
11315, 112sylan 581 . . . . . 6 ((𝜑𝑥𝐴) → (((0g𝑍) ∘ 𝐹)‘𝑥) = ((0g𝑍)‘(𝐹𝑥)))
114 fvconst2g 7203 . . . . . . 7 (((0g𝑅) ∈ V ∧ 𝑥𝐴) → ((𝐴 × {(0g𝑅)})‘𝑥) = (0g𝑅))
11599, 114sylan 581 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐴 × {(0g𝑅)})‘𝑥) = (0g𝑅))
116111, 113, 1153eqtr4d 2783 . . . . 5 ((𝜑𝑥𝐴) → (((0g𝑍) ∘ 𝐹)‘𝑥) = ((𝐴 × {(0g𝑅)})‘𝑥))
11798, 101, 116eqfnfvd 7036 . . . 4 (𝜑 → ((0g𝑍) ∘ 𝐹) = (𝐴 × {(0g𝑅)}))
1187, 102pws0g 18661 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐴𝑉) → (𝐴 × {(0g𝑅)}) = (0g𝑌))
1191, 6, 118syl2anc 585 . . . 4 (𝜑 → (𝐴 × {(0g𝑅)}) = (0g𝑌))
12094, 117, 1193eqtrd 2777 . . 3 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = (0g𝑌))
12124, 87, 1203jca 1129 . 2 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹)):𝐶⟶(Base‘𝑌) ∧ ∀𝑥𝐶𝑦𝐶 ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)) ∧ ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = (0g𝑌)))
122 eqid 2733 . . 3 (0g𝑌) = (0g𝑌)
12311, 19, 57, 55, 89, 122ismhm 18673 . 2 ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌) ↔ ((𝑍 ∈ Mnd ∧ 𝑌 ∈ Mnd) ∧ ((𝑔𝐶 ↦ (𝑔𝐹)):𝐶⟶(Base‘𝑌) ∧ ∀𝑥𝐶𝑦𝐶 ((𝑔𝐶 ↦ (𝑔𝐹))‘(𝑥(+g𝑍)𝑦)) = (((𝑔𝐶 ↦ (𝑔𝐹))‘𝑥)(+g𝑌)((𝑔𝐶 ↦ (𝑔𝐹))‘𝑦)) ∧ ((𝑔𝐶 ↦ (𝑔𝐹))‘(0g𝑍)) = (0g𝑌))))
1245, 9, 121, 123syl21anbrc 1345 1 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  {csn 4629  cmpt 5232   × cxp 5675  ccom 5681   Fn wfn 6539  wf 6540  cfv 6544  (class class class)co 7409  f cof 7668  Basecbs 17144  +gcplusg 17197  0gc0g 17385  s cpws 17392  Mndcmnd 18625   MndHom cmhm 18669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-hom 17221  df-cco 17222  df-0g 17387  df-prds 17393  df-pws 17395  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671
This theorem is referenced by:  pwsco1rhm  20277
  Copyright terms: Public domain W3C validator