MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdspjmhm Structured version   Visualization version   GIF version

Theorem prdspjmhm 17985
Description: A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
prdspjmhm.y 𝑌 = (𝑆Xs𝑅)
prdspjmhm.b 𝐵 = (Base‘𝑌)
prdspjmhm.i (𝜑𝐼𝑉)
prdspjmhm.s (𝜑𝑆𝑋)
prdspjmhm.r (𝜑𝑅:𝐼⟶Mnd)
prdspjmhm.a (𝜑𝐴𝐼)
Assertion
Ref Expression
prdspjmhm (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑅   𝑥,𝑌
Allowed substitution hints:   𝑆(𝑥)   𝐼(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem prdspjmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdspjmhm.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdspjmhm.i . . 3 (𝜑𝐼𝑉)
3 prdspjmhm.s . . 3 (𝜑𝑆𝑋)
4 prdspjmhm.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
51, 2, 3, 4prdsmndd 17936 . 2 (𝜑𝑌 ∈ Mnd)
6 prdspjmhm.a . . 3 (𝜑𝐴𝐼)
74, 6ffvelrnd 6829 . 2 (𝜑 → (𝑅𝐴) ∈ Mnd)
8 prdspjmhm.b . . . . 5 𝐵 = (Base‘𝑌)
93adantr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑆𝑋)
102adantr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
114ffnd 6488 . . . . . 6 (𝜑𝑅 Fn 𝐼)
1211adantr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
13 simpr 488 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
146adantr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝐴𝐼)
151, 8, 9, 10, 12, 13, 14prdsbasprj 16737 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘(𝑅𝐴)))
1615fmpttd 6856 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)))
173adantr 484 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑆𝑋)
182adantr 484 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑉)
1911adantr 484 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 Fn 𝐼)
20 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
21 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
22 eqid 2798 . . . . . 6 (+g𝑌) = (+g𝑌)
236adantr 484 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴𝐼)
241, 8, 17, 18, 19, 20, 21, 22, 23prdsplusgfval 16739 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑌)𝑧)‘𝐴) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
258, 22mndcl 17911 . . . . . . . 8 ((𝑌 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
26253expb 1117 . . . . . . 7 ((𝑌 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
275, 26sylan 583 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
28 fveq1 6644 . . . . . . 7 (𝑥 = (𝑦(+g𝑌)𝑧) → (𝑥𝐴) = ((𝑦(+g𝑌)𝑧)‘𝐴))
29 eqid 2798 . . . . . . 7 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
30 fvex 6658 . . . . . . 7 ((𝑦(+g𝑌)𝑧)‘𝐴) ∈ V
3128, 29, 30fvmpt 6745 . . . . . 6 ((𝑦(+g𝑌)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
3227, 31syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
33 fveq1 6644 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
34 fvex 6658 . . . . . . . 8 (𝑦𝐴) ∈ V
3533, 29, 34fvmpt 6745 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦) = (𝑦𝐴))
36 fveq1 6644 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
37 fvex 6658 . . . . . . . 8 (𝑧𝐴) ∈ V
3836, 29, 37fvmpt 6745 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧) = (𝑧𝐴))
3935, 38oveqan12d 7154 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4039adantl 485 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4124, 32, 403eqtr4d 2843 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
4241ralrimivva 3156 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
43 eqid 2798 . . . . . 6 (0g𝑌) = (0g𝑌)
448, 43mndidcl 17918 . . . . 5 (𝑌 ∈ Mnd → (0g𝑌) ∈ 𝐵)
45 fveq1 6644 . . . . . 6 (𝑥 = (0g𝑌) → (𝑥𝐴) = ((0g𝑌)‘𝐴))
46 fvex 6658 . . . . . 6 ((0g𝑌)‘𝐴) ∈ V
4745, 29, 46fvmpt 6745 . . . . 5 ((0g𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
485, 44, 473syl 18 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
491, 2, 3, 4prds0g 17937 . . . . 5 (𝜑 → (0g𝑅) = (0g𝑌))
5049fveq1d 6647 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = ((0g𝑌)‘𝐴))
51 fvco3 6737 . . . . 5 ((𝑅:𝐼⟶Mnd ∧ 𝐴𝐼) → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
524, 6, 51syl2anc 587 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
5348, 50, 523eqtr2d 2839 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))
5416, 42, 533jca 1125 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴))))
55 eqid 2798 . . 3 (Base‘(𝑅𝐴)) = (Base‘(𝑅𝐴))
56 eqid 2798 . . 3 (+g‘(𝑅𝐴)) = (+g‘(𝑅𝐴))
57 eqid 2798 . . 3 (0g‘(𝑅𝐴)) = (0g‘(𝑅𝐴))
588, 55, 22, 56, 43, 57ismhm 17950 . 2 ((𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)) ↔ ((𝑌 ∈ Mnd ∧ (𝑅𝐴) ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))))
595, 7, 54, 58syl21anbrc 1341 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cmpt 5110  ccom 5523   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Xscprds 16711  Mndcmnd 17903   MndHom cmhm 17946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948
This theorem is referenced by:  pwspjmhm  17986  prdsgsum  19094
  Copyright terms: Public domain W3C validator