Step | Hyp | Ref
| Expression |
1 | | prdspjmhm.y |
. . 3
⊢ 𝑌 = (𝑆Xs𝑅) |
2 | | prdspjmhm.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
3 | | prdspjmhm.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑋) |
4 | | prdspjmhm.r |
. . 3
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
5 | 1, 2, 3, 4 | prdsmndd 18333 |
. 2
⊢ (𝜑 → 𝑌 ∈ Mnd) |
6 | | prdspjmhm.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝐼) |
7 | 4, 6 | ffvelrnd 6944 |
. 2
⊢ (𝜑 → (𝑅‘𝐴) ∈ Mnd) |
8 | | prdspjmhm.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
9 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝑋) |
10 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ∈ 𝑉) |
11 | 4 | ffnd 6585 |
. . . . . 6
⊢ (𝜑 → 𝑅 Fn 𝐼) |
12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 Fn 𝐼) |
13 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
14 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐼) |
15 | 1, 8, 9, 10, 12, 13, 14 | prdsbasprj 17100 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥‘𝐴) ∈ (Base‘(𝑅‘𝐴))) |
16 | 15 | fmpttd 6971 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)):𝐵⟶(Base‘(𝑅‘𝐴))) |
17 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑆 ∈ 𝑋) |
18 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐼 ∈ 𝑉) |
19 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 Fn 𝐼) |
20 | | simprl 767 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
21 | | simprr 769 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
22 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑌) = (+g‘𝑌) |
23 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐴 ∈ 𝐼) |
24 | 1, 8, 17, 18, 19, 20, 21, 22, 23 | prdsplusgfval 17102 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑌)𝑧)‘𝐴) = ((𝑦‘𝐴)(+g‘(𝑅‘𝐴))(𝑧‘𝐴))) |
25 | 8, 22 | mndcl 18308 |
. . . . . . . 8
⊢ ((𝑌 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑌)𝑧) ∈ 𝐵) |
26 | 25 | 3expb 1118 |
. . . . . . 7
⊢ ((𝑌 ∈ Mnd ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑌)𝑧) ∈ 𝐵) |
27 | 5, 26 | sylan 579 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑌)𝑧) ∈ 𝐵) |
28 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑥 = (𝑦(+g‘𝑌)𝑧) → (𝑥‘𝐴) = ((𝑦(+g‘𝑌)𝑧)‘𝐴)) |
29 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) = (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) |
30 | | fvex 6769 |
. . . . . . 7
⊢ ((𝑦(+g‘𝑌)𝑧)‘𝐴) ∈ V |
31 | 28, 29, 30 | fvmpt 6857 |
. . . . . 6
⊢ ((𝑦(+g‘𝑌)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = ((𝑦(+g‘𝑌)𝑧)‘𝐴)) |
32 | 27, 31 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = ((𝑦(+g‘𝑌)𝑧)‘𝐴)) |
33 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥‘𝐴) = (𝑦‘𝐴)) |
34 | | fvex 6769 |
. . . . . . . 8
⊢ (𝑦‘𝐴) ∈ V |
35 | 33, 29, 34 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦) = (𝑦‘𝐴)) |
36 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥‘𝐴) = (𝑧‘𝐴)) |
37 | | fvex 6769 |
. . . . . . . 8
⊢ (𝑧‘𝐴) ∈ V |
38 | 36, 29, 37 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧) = (𝑧‘𝐴)) |
39 | 35, 38 | oveqan12d 7274 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧)) = ((𝑦‘𝐴)(+g‘(𝑅‘𝐴))(𝑧‘𝐴))) |
40 | 39 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧)) = ((𝑦‘𝐴)(+g‘(𝑅‘𝐴))(𝑧‘𝐴))) |
41 | 24, 32, 40 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧))) |
42 | 41 | ralrimivva 3114 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧))) |
43 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝑌) = (0g‘𝑌) |
44 | 8, 43 | mndidcl 18315 |
. . . . 5
⊢ (𝑌 ∈ Mnd →
(0g‘𝑌)
∈ 𝐵) |
45 | | fveq1 6755 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑌) → (𝑥‘𝐴) = ((0g‘𝑌)‘𝐴)) |
46 | | fvex 6769 |
. . . . . 6
⊢
((0g‘𝑌)‘𝐴) ∈ V |
47 | 45, 29, 46 | fvmpt 6857 |
. . . . 5
⊢
((0g‘𝑌) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = ((0g‘𝑌)‘𝐴)) |
48 | 5, 44, 47 | 3syl 18 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = ((0g‘𝑌)‘𝐴)) |
49 | 1, 2, 3, 4 | prds0g 18334 |
. . . . 5
⊢ (𝜑 → (0g ∘
𝑅) =
(0g‘𝑌)) |
50 | 49 | fveq1d 6758 |
. . . 4
⊢ (𝜑 → ((0g ∘
𝑅)‘𝐴) = ((0g‘𝑌)‘𝐴)) |
51 | | fvco3 6849 |
. . . . 5
⊢ ((𝑅:𝐼⟶Mnd ∧ 𝐴 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝐴) = (0g‘(𝑅‘𝐴))) |
52 | 4, 6, 51 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((0g ∘
𝑅)‘𝐴) = (0g‘(𝑅‘𝐴))) |
53 | 48, 50, 52 | 3eqtr2d 2784 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = (0g‘(𝑅‘𝐴))) |
54 | 16, 42, 53 | 3jca 1126 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)):𝐵⟶(Base‘(𝑅‘𝐴)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = (0g‘(𝑅‘𝐴)))) |
55 | | eqid 2738 |
. . 3
⊢
(Base‘(𝑅‘𝐴)) = (Base‘(𝑅‘𝐴)) |
56 | | eqid 2738 |
. . 3
⊢
(+g‘(𝑅‘𝐴)) = (+g‘(𝑅‘𝐴)) |
57 | | eqid 2738 |
. . 3
⊢
(0g‘(𝑅‘𝐴)) = (0g‘(𝑅‘𝐴)) |
58 | 8, 55, 22, 56, 43, 57 | ismhm 18347 |
. 2
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom (𝑅‘𝐴)) ↔ ((𝑌 ∈ Mnd ∧ (𝑅‘𝐴) ∈ Mnd) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)):𝐵⟶(Base‘(𝑅‘𝐴)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = (0g‘(𝑅‘𝐴))))) |
59 | 5, 7, 54, 58 | syl21anbrc 1342 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom (𝑅‘𝐴))) |