| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | prdspjmhm.y | . . 3
⊢ 𝑌 = (𝑆Xs𝑅) | 
| 2 |  | prdspjmhm.i | . . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) | 
| 3 |  | prdspjmhm.s | . . 3
⊢ (𝜑 → 𝑆 ∈ 𝑋) | 
| 4 |  | prdspjmhm.r | . . 3
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) | 
| 5 | 1, 2, 3, 4 | prdsmndd 18783 | . 2
⊢ (𝜑 → 𝑌 ∈ Mnd) | 
| 6 |  | prdspjmhm.a | . . 3
⊢ (𝜑 → 𝐴 ∈ 𝐼) | 
| 7 | 4, 6 | ffvelcdmd 7105 | . 2
⊢ (𝜑 → (𝑅‘𝐴) ∈ Mnd) | 
| 8 |  | prdspjmhm.b | . . . . 5
⊢ 𝐵 = (Base‘𝑌) | 
| 9 | 3 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝑋) | 
| 10 | 2 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ∈ 𝑉) | 
| 11 | 4 | ffnd 6737 | . . . . . 6
⊢ (𝜑 → 𝑅 Fn 𝐼) | 
| 12 | 11 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 Fn 𝐼) | 
| 13 |  | simpr 484 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 14 | 6 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐼) | 
| 15 | 1, 8, 9, 10, 12, 13, 14 | prdsbasprj 17517 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥‘𝐴) ∈ (Base‘(𝑅‘𝐴))) | 
| 16 | 15 | fmpttd 7135 | . . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)):𝐵⟶(Base‘(𝑅‘𝐴))) | 
| 17 | 3 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑆 ∈ 𝑋) | 
| 18 | 2 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐼 ∈ 𝑉) | 
| 19 | 11 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑅 Fn 𝐼) | 
| 20 |  | simprl 771 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | 
| 21 |  | simprr 773 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) | 
| 22 |  | eqid 2737 | . . . . . 6
⊢
(+g‘𝑌) = (+g‘𝑌) | 
| 23 | 6 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐴 ∈ 𝐼) | 
| 24 | 1, 8, 17, 18, 19, 20, 21, 22, 23 | prdsplusgfval 17519 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑌)𝑧)‘𝐴) = ((𝑦‘𝐴)(+g‘(𝑅‘𝐴))(𝑧‘𝐴))) | 
| 25 | 8, 22 | mndcl 18755 | . . . . . . . 8
⊢ ((𝑌 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑌)𝑧) ∈ 𝐵) | 
| 26 | 25 | 3expb 1121 | . . . . . . 7
⊢ ((𝑌 ∈ Mnd ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑌)𝑧) ∈ 𝐵) | 
| 27 | 5, 26 | sylan 580 | . . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑌)𝑧) ∈ 𝐵) | 
| 28 |  | fveq1 6905 | . . . . . . 7
⊢ (𝑥 = (𝑦(+g‘𝑌)𝑧) → (𝑥‘𝐴) = ((𝑦(+g‘𝑌)𝑧)‘𝐴)) | 
| 29 |  | eqid 2737 | . . . . . . 7
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) = (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) | 
| 30 |  | fvex 6919 | . . . . . . 7
⊢ ((𝑦(+g‘𝑌)𝑧)‘𝐴) ∈ V | 
| 31 | 28, 29, 30 | fvmpt 7016 | . . . . . 6
⊢ ((𝑦(+g‘𝑌)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = ((𝑦(+g‘𝑌)𝑧)‘𝐴)) | 
| 32 | 27, 31 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = ((𝑦(+g‘𝑌)𝑧)‘𝐴)) | 
| 33 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥‘𝐴) = (𝑦‘𝐴)) | 
| 34 |  | fvex 6919 | . . . . . . . 8
⊢ (𝑦‘𝐴) ∈ V | 
| 35 | 33, 29, 34 | fvmpt 7016 | . . . . . . 7
⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦) = (𝑦‘𝐴)) | 
| 36 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥‘𝐴) = (𝑧‘𝐴)) | 
| 37 |  | fvex 6919 | . . . . . . . 8
⊢ (𝑧‘𝐴) ∈ V | 
| 38 | 36, 29, 37 | fvmpt 7016 | . . . . . . 7
⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧) = (𝑧‘𝐴)) | 
| 39 | 35, 38 | oveqan12d 7450 | . . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧)) = ((𝑦‘𝐴)(+g‘(𝑅‘𝐴))(𝑧‘𝐴))) | 
| 40 | 39 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧)) = ((𝑦‘𝐴)(+g‘(𝑅‘𝐴))(𝑧‘𝐴))) | 
| 41 | 24, 32, 40 | 3eqtr4d 2787 | . . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧))) | 
| 42 | 41 | ralrimivva 3202 | . . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧))) | 
| 43 |  | eqid 2737 | . . . . . 6
⊢
(0g‘𝑌) = (0g‘𝑌) | 
| 44 | 8, 43 | mndidcl 18762 | . . . . 5
⊢ (𝑌 ∈ Mnd →
(0g‘𝑌)
∈ 𝐵) | 
| 45 |  | fveq1 6905 | . . . . . 6
⊢ (𝑥 = (0g‘𝑌) → (𝑥‘𝐴) = ((0g‘𝑌)‘𝐴)) | 
| 46 |  | fvex 6919 | . . . . . 6
⊢
((0g‘𝑌)‘𝐴) ∈ V | 
| 47 | 45, 29, 46 | fvmpt 7016 | . . . . 5
⊢
((0g‘𝑌) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = ((0g‘𝑌)‘𝐴)) | 
| 48 | 5, 44, 47 | 3syl 18 | . . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = ((0g‘𝑌)‘𝐴)) | 
| 49 | 1, 2, 3, 4 | prds0g 18784 | . . . . 5
⊢ (𝜑 → (0g ∘
𝑅) =
(0g‘𝑌)) | 
| 50 | 49 | fveq1d 6908 | . . . 4
⊢ (𝜑 → ((0g ∘
𝑅)‘𝐴) = ((0g‘𝑌)‘𝐴)) | 
| 51 |  | fvco3 7008 | . . . . 5
⊢ ((𝑅:𝐼⟶Mnd ∧ 𝐴 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝐴) = (0g‘(𝑅‘𝐴))) | 
| 52 | 4, 6, 51 | syl2anc 584 | . . . 4
⊢ (𝜑 → ((0g ∘
𝑅)‘𝐴) = (0g‘(𝑅‘𝐴))) | 
| 53 | 48, 50, 52 | 3eqtr2d 2783 | . . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = (0g‘(𝑅‘𝐴))) | 
| 54 | 16, 42, 53 | 3jca 1129 | . 2
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)):𝐵⟶(Base‘(𝑅‘𝐴)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = (0g‘(𝑅‘𝐴)))) | 
| 55 |  | eqid 2737 | . . 3
⊢
(Base‘(𝑅‘𝐴)) = (Base‘(𝑅‘𝐴)) | 
| 56 |  | eqid 2737 | . . 3
⊢
(+g‘(𝑅‘𝐴)) = (+g‘(𝑅‘𝐴)) | 
| 57 |  | eqid 2737 | . . 3
⊢
(0g‘(𝑅‘𝐴)) = (0g‘(𝑅‘𝐴)) | 
| 58 | 8, 55, 22, 56, 43, 57 | ismhm 18798 | . 2
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom (𝑅‘𝐴)) ↔ ((𝑌 ∈ Mnd ∧ (𝑅‘𝐴) ∈ Mnd) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)):𝐵⟶(Base‘(𝑅‘𝐴)) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑦(+g‘𝑌)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑦)(+g‘(𝑅‘𝐴))((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑧)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(0g‘𝑌)) = (0g‘(𝑅‘𝐴))))) | 
| 59 | 5, 7, 54, 58 | syl21anbrc 1345 | 1
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom (𝑅‘𝐴))) |