MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdspjmhm Structured version   Visualization version   GIF version

Theorem prdspjmhm 18842
Description: A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
prdspjmhm.y 𝑌 = (𝑆Xs𝑅)
prdspjmhm.b 𝐵 = (Base‘𝑌)
prdspjmhm.i (𝜑𝐼𝑉)
prdspjmhm.s (𝜑𝑆𝑋)
prdspjmhm.r (𝜑𝑅:𝐼⟶Mnd)
prdspjmhm.a (𝜑𝐴𝐼)
Assertion
Ref Expression
prdspjmhm (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑅   𝑥,𝑌
Allowed substitution hints:   𝑆(𝑥)   𝐼(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem prdspjmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdspjmhm.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdspjmhm.i . . 3 (𝜑𝐼𝑉)
3 prdspjmhm.s . . 3 (𝜑𝑆𝑋)
4 prdspjmhm.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
51, 2, 3, 4prdsmndd 18783 . 2 (𝜑𝑌 ∈ Mnd)
6 prdspjmhm.a . . 3 (𝜑𝐴𝐼)
74, 6ffvelcdmd 7105 . 2 (𝜑 → (𝑅𝐴) ∈ Mnd)
8 prdspjmhm.b . . . . 5 𝐵 = (Base‘𝑌)
93adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝑆𝑋)
102adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
114ffnd 6737 . . . . . 6 (𝜑𝑅 Fn 𝐼)
1211adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
13 simpr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
146adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐴𝐼)
151, 8, 9, 10, 12, 13, 14prdsbasprj 17517 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘(𝑅𝐴)))
1615fmpttd 7135 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)))
173adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑆𝑋)
182adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑉)
1911adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 Fn 𝐼)
20 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
21 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
22 eqid 2737 . . . . . 6 (+g𝑌) = (+g𝑌)
236adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴𝐼)
241, 8, 17, 18, 19, 20, 21, 22, 23prdsplusgfval 17519 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑌)𝑧)‘𝐴) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
258, 22mndcl 18755 . . . . . . . 8 ((𝑌 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
26253expb 1121 . . . . . . 7 ((𝑌 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
275, 26sylan 580 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
28 fveq1 6905 . . . . . . 7 (𝑥 = (𝑦(+g𝑌)𝑧) → (𝑥𝐴) = ((𝑦(+g𝑌)𝑧)‘𝐴))
29 eqid 2737 . . . . . . 7 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
30 fvex 6919 . . . . . . 7 ((𝑦(+g𝑌)𝑧)‘𝐴) ∈ V
3128, 29, 30fvmpt 7016 . . . . . 6 ((𝑦(+g𝑌)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
3227, 31syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
33 fveq1 6905 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
34 fvex 6919 . . . . . . . 8 (𝑦𝐴) ∈ V
3533, 29, 34fvmpt 7016 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦) = (𝑦𝐴))
36 fveq1 6905 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
37 fvex 6919 . . . . . . . 8 (𝑧𝐴) ∈ V
3836, 29, 37fvmpt 7016 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧) = (𝑧𝐴))
3935, 38oveqan12d 7450 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4039adantl 481 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4124, 32, 403eqtr4d 2787 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
4241ralrimivva 3202 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
43 eqid 2737 . . . . . 6 (0g𝑌) = (0g𝑌)
448, 43mndidcl 18762 . . . . 5 (𝑌 ∈ Mnd → (0g𝑌) ∈ 𝐵)
45 fveq1 6905 . . . . . 6 (𝑥 = (0g𝑌) → (𝑥𝐴) = ((0g𝑌)‘𝐴))
46 fvex 6919 . . . . . 6 ((0g𝑌)‘𝐴) ∈ V
4745, 29, 46fvmpt 7016 . . . . 5 ((0g𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
485, 44, 473syl 18 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
491, 2, 3, 4prds0g 18784 . . . . 5 (𝜑 → (0g𝑅) = (0g𝑌))
5049fveq1d 6908 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = ((0g𝑌)‘𝐴))
51 fvco3 7008 . . . . 5 ((𝑅:𝐼⟶Mnd ∧ 𝐴𝐼) → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
524, 6, 51syl2anc 584 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
5348, 50, 523eqtr2d 2783 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))
5416, 42, 533jca 1129 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴))))
55 eqid 2737 . . 3 (Base‘(𝑅𝐴)) = (Base‘(𝑅𝐴))
56 eqid 2737 . . 3 (+g‘(𝑅𝐴)) = (+g‘(𝑅𝐴))
57 eqid 2737 . . 3 (0g‘(𝑅𝐴)) = (0g‘(𝑅𝐴))
588, 55, 22, 56, 43, 57ismhm 18798 . 2 ((𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)) ↔ ((𝑌 ∈ Mnd ∧ (𝑅𝐴) ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))))
595, 7, 54, 58syl21anbrc 1345 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cmpt 5225  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Xscprds 17490  Mndcmnd 18747   MndHom cmhm 18794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796
This theorem is referenced by:  pwspjmhm  18843  prdsgsum  19999
  Copyright terms: Public domain W3C validator