MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdspjmhm Structured version   Visualization version   GIF version

Theorem prdspjmhm 18780
Description: A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
prdspjmhm.y 𝑌 = (𝑆Xs𝑅)
prdspjmhm.b 𝐵 = (Base‘𝑌)
prdspjmhm.i (𝜑𝐼𝑉)
prdspjmhm.s (𝜑𝑆𝑋)
prdspjmhm.r (𝜑𝑅:𝐼⟶Mnd)
prdspjmhm.a (𝜑𝐴𝐼)
Assertion
Ref Expression
prdspjmhm (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑅   𝑥,𝑌
Allowed substitution hints:   𝑆(𝑥)   𝐼(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem prdspjmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdspjmhm.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdspjmhm.i . . 3 (𝜑𝐼𝑉)
3 prdspjmhm.s . . 3 (𝜑𝑆𝑋)
4 prdspjmhm.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
51, 2, 3, 4prdsmndd 18726 . 2 (𝜑𝑌 ∈ Mnd)
6 prdspjmhm.a . . 3 (𝜑𝐴𝐼)
74, 6ffvelcdmd 7095 . 2 (𝜑 → (𝑅𝐴) ∈ Mnd)
8 prdspjmhm.b . . . . 5 𝐵 = (Base‘𝑌)
93adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝑆𝑋)
102adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
114ffnd 6723 . . . . . 6 (𝜑𝑅 Fn 𝐼)
1211adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
13 simpr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
146adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐴𝐼)
151, 8, 9, 10, 12, 13, 14prdsbasprj 17453 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘(𝑅𝐴)))
1615fmpttd 7125 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)))
173adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑆𝑋)
182adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑉)
1911adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 Fn 𝐼)
20 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
21 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
22 eqid 2728 . . . . . 6 (+g𝑌) = (+g𝑌)
236adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴𝐼)
241, 8, 17, 18, 19, 20, 21, 22, 23prdsplusgfval 17455 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑌)𝑧)‘𝐴) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
258, 22mndcl 18701 . . . . . . . 8 ((𝑌 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
26253expb 1118 . . . . . . 7 ((𝑌 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
275, 26sylan 579 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
28 fveq1 6896 . . . . . . 7 (𝑥 = (𝑦(+g𝑌)𝑧) → (𝑥𝐴) = ((𝑦(+g𝑌)𝑧)‘𝐴))
29 eqid 2728 . . . . . . 7 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
30 fvex 6910 . . . . . . 7 ((𝑦(+g𝑌)𝑧)‘𝐴) ∈ V
3128, 29, 30fvmpt 7005 . . . . . 6 ((𝑦(+g𝑌)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
3227, 31syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
33 fveq1 6896 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
34 fvex 6910 . . . . . . . 8 (𝑦𝐴) ∈ V
3533, 29, 34fvmpt 7005 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦) = (𝑦𝐴))
36 fveq1 6896 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
37 fvex 6910 . . . . . . . 8 (𝑧𝐴) ∈ V
3836, 29, 37fvmpt 7005 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧) = (𝑧𝐴))
3935, 38oveqan12d 7439 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4039adantl 481 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4124, 32, 403eqtr4d 2778 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
4241ralrimivva 3197 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
43 eqid 2728 . . . . . 6 (0g𝑌) = (0g𝑌)
448, 43mndidcl 18708 . . . . 5 (𝑌 ∈ Mnd → (0g𝑌) ∈ 𝐵)
45 fveq1 6896 . . . . . 6 (𝑥 = (0g𝑌) → (𝑥𝐴) = ((0g𝑌)‘𝐴))
46 fvex 6910 . . . . . 6 ((0g𝑌)‘𝐴) ∈ V
4745, 29, 46fvmpt 7005 . . . . 5 ((0g𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
485, 44, 473syl 18 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
491, 2, 3, 4prds0g 18727 . . . . 5 (𝜑 → (0g𝑅) = (0g𝑌))
5049fveq1d 6899 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = ((0g𝑌)‘𝐴))
51 fvco3 6997 . . . . 5 ((𝑅:𝐼⟶Mnd ∧ 𝐴𝐼) → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
524, 6, 51syl2anc 583 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
5348, 50, 523eqtr2d 2774 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))
5416, 42, 533jca 1126 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴))))
55 eqid 2728 . . 3 (Base‘(𝑅𝐴)) = (Base‘(𝑅𝐴))
56 eqid 2728 . . 3 (+g‘(𝑅𝐴)) = (+g‘(𝑅𝐴))
57 eqid 2728 . . 3 (0g‘(𝑅𝐴)) = (0g‘(𝑅𝐴))
588, 55, 22, 56, 43, 57ismhm 18741 . 2 ((𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)) ↔ ((𝑌 ∈ Mnd ∧ (𝑅𝐴) ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))))
595, 7, 54, 58syl21anbrc 1342 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  cmpt 5231  ccom 5682   Fn wfn 6543  wf 6544  cfv 6548  (class class class)co 7420  Basecbs 17179  +gcplusg 17232  0gc0g 17420  Xscprds 17426  Mndcmnd 18693   MndHom cmhm 18737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17115  df-slot 17150  df-ndx 17162  df-base 17180  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-hom 17256  df-cco 17257  df-0g 17422  df-prds 17428  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739
This theorem is referenced by:  pwspjmhm  18781  prdsgsum  19935
  Copyright terms: Public domain W3C validator