MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdspjmhm Structured version   Visualization version   GIF version

Theorem prdspjmhm 18864
Description: A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
prdspjmhm.y 𝑌 = (𝑆Xs𝑅)
prdspjmhm.b 𝐵 = (Base‘𝑌)
prdspjmhm.i (𝜑𝐼𝑉)
prdspjmhm.s (𝜑𝑆𝑋)
prdspjmhm.r (𝜑𝑅:𝐼⟶Mnd)
prdspjmhm.a (𝜑𝐴𝐼)
Assertion
Ref Expression
prdspjmhm (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑅   𝑥,𝑌
Allowed substitution hints:   𝑆(𝑥)   𝐼(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem prdspjmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdspjmhm.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdspjmhm.i . . 3 (𝜑𝐼𝑉)
3 prdspjmhm.s . . 3 (𝜑𝑆𝑋)
4 prdspjmhm.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
51, 2, 3, 4prdsmndd 18805 . 2 (𝜑𝑌 ∈ Mnd)
6 prdspjmhm.a . . 3 (𝜑𝐴𝐼)
74, 6ffvelcdmd 7119 . 2 (𝜑 → (𝑅𝐴) ∈ Mnd)
8 prdspjmhm.b . . . . 5 𝐵 = (Base‘𝑌)
93adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝑆𝑋)
102adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
114ffnd 6748 . . . . . 6 (𝜑𝑅 Fn 𝐼)
1211adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
13 simpr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
146adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐴𝐼)
151, 8, 9, 10, 12, 13, 14prdsbasprj 17532 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘(𝑅𝐴)))
1615fmpttd 7149 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)))
173adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑆𝑋)
182adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑉)
1911adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 Fn 𝐼)
20 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
21 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
22 eqid 2740 . . . . . 6 (+g𝑌) = (+g𝑌)
236adantr 480 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴𝐼)
241, 8, 17, 18, 19, 20, 21, 22, 23prdsplusgfval 17534 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑌)𝑧)‘𝐴) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
258, 22mndcl 18780 . . . . . . . 8 ((𝑌 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
26253expb 1120 . . . . . . 7 ((𝑌 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
275, 26sylan 579 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
28 fveq1 6919 . . . . . . 7 (𝑥 = (𝑦(+g𝑌)𝑧) → (𝑥𝐴) = ((𝑦(+g𝑌)𝑧)‘𝐴))
29 eqid 2740 . . . . . . 7 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
30 fvex 6933 . . . . . . 7 ((𝑦(+g𝑌)𝑧)‘𝐴) ∈ V
3128, 29, 30fvmpt 7029 . . . . . 6 ((𝑦(+g𝑌)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
3227, 31syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
33 fveq1 6919 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
34 fvex 6933 . . . . . . . 8 (𝑦𝐴) ∈ V
3533, 29, 34fvmpt 7029 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦) = (𝑦𝐴))
36 fveq1 6919 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
37 fvex 6933 . . . . . . . 8 (𝑧𝐴) ∈ V
3836, 29, 37fvmpt 7029 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧) = (𝑧𝐴))
3935, 38oveqan12d 7467 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4039adantl 481 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4124, 32, 403eqtr4d 2790 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
4241ralrimivva 3208 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
43 eqid 2740 . . . . . 6 (0g𝑌) = (0g𝑌)
448, 43mndidcl 18787 . . . . 5 (𝑌 ∈ Mnd → (0g𝑌) ∈ 𝐵)
45 fveq1 6919 . . . . . 6 (𝑥 = (0g𝑌) → (𝑥𝐴) = ((0g𝑌)‘𝐴))
46 fvex 6933 . . . . . 6 ((0g𝑌)‘𝐴) ∈ V
4745, 29, 46fvmpt 7029 . . . . 5 ((0g𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
485, 44, 473syl 18 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
491, 2, 3, 4prds0g 18806 . . . . 5 (𝜑 → (0g𝑅) = (0g𝑌))
5049fveq1d 6922 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = ((0g𝑌)‘𝐴))
51 fvco3 7021 . . . . 5 ((𝑅:𝐼⟶Mnd ∧ 𝐴𝐼) → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
524, 6, 51syl2anc 583 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
5348, 50, 523eqtr2d 2786 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))
5416, 42, 533jca 1128 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴))))
55 eqid 2740 . . 3 (Base‘(𝑅𝐴)) = (Base‘(𝑅𝐴))
56 eqid 2740 . . 3 (+g‘(𝑅𝐴)) = (+g‘(𝑅𝐴))
57 eqid 2740 . . 3 (0g‘(𝑅𝐴)) = (0g‘(𝑅𝐴))
588, 55, 22, 56, 43, 57ismhm 18820 . 2 ((𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)) ↔ ((𝑌 ∈ Mnd ∧ (𝑅𝐴) ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))))
595, 7, 54, 58syl21anbrc 1344 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cmpt 5249  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Xscprds 17505  Mndcmnd 18772   MndHom cmhm 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818
This theorem is referenced by:  pwspjmhm  18865  prdsgsum  20023
  Copyright terms: Public domain W3C validator