MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdspjmhm Structured version   Visualization version   GIF version

Theorem prdspjmhm 17972
Description: A projection from a product of monoids to one of the factors is a monoid homomorphism. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
prdspjmhm.y 𝑌 = (𝑆Xs𝑅)
prdspjmhm.b 𝐵 = (Base‘𝑌)
prdspjmhm.i (𝜑𝐼𝑉)
prdspjmhm.s (𝜑𝑆𝑋)
prdspjmhm.r (𝜑𝑅:𝐼⟶Mnd)
prdspjmhm.a (𝜑𝐴𝐼)
Assertion
Ref Expression
prdspjmhm (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑅   𝑥,𝑌
Allowed substitution hints:   𝑆(𝑥)   𝐼(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem prdspjmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdspjmhm.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdspjmhm.i . . 3 (𝜑𝐼𝑉)
3 prdspjmhm.s . . 3 (𝜑𝑆𝑋)
4 prdspjmhm.r . . 3 (𝜑𝑅:𝐼⟶Mnd)
51, 2, 3, 4prdsmndd 17923 . 2 (𝜑𝑌 ∈ Mnd)
6 prdspjmhm.a . . 3 (𝜑𝐴𝐼)
74, 6ffvelrnd 6828 . 2 (𝜑 → (𝑅𝐴) ∈ Mnd)
8 prdspjmhm.b . . . . 5 𝐵 = (Base‘𝑌)
93adantr 483 . . . . 5 ((𝜑𝑥𝐵) → 𝑆𝑋)
102adantr 483 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
114ffnd 6491 . . . . . 6 (𝜑𝑅 Fn 𝐼)
1211adantr 483 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
13 simpr 487 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
146adantr 483 . . . . 5 ((𝜑𝑥𝐵) → 𝐴𝐼)
151, 8, 9, 10, 12, 13, 14prdsbasprj 16724 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘(𝑅𝐴)))
1615fmpttd 6855 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)))
173adantr 483 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑆𝑋)
182adantr 483 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐼𝑉)
1911adantr 483 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑅 Fn 𝐼)
20 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
21 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
22 eqid 2820 . . . . . 6 (+g𝑌) = (+g𝑌)
236adantr 483 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → 𝐴𝐼)
241, 8, 17, 18, 19, 20, 21, 22, 23prdsplusgfval 16726 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑌)𝑧)‘𝐴) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
258, 22mndcl 17898 . . . . . . . 8 ((𝑌 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
26253expb 1116 . . . . . . 7 ((𝑌 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
275, 26sylan 582 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑌)𝑧) ∈ 𝐵)
28 fveq1 6645 . . . . . . 7 (𝑥 = (𝑦(+g𝑌)𝑧) → (𝑥𝐴) = ((𝑦(+g𝑌)𝑧)‘𝐴))
29 eqid 2820 . . . . . . 7 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
30 fvex 6659 . . . . . . 7 ((𝑦(+g𝑌)𝑧)‘𝐴) ∈ V
3128, 29, 30fvmpt 6744 . . . . . 6 ((𝑦(+g𝑌)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
3227, 31syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = ((𝑦(+g𝑌)𝑧)‘𝐴))
33 fveq1 6645 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
34 fvex 6659 . . . . . . . 8 (𝑦𝐴) ∈ V
3533, 29, 34fvmpt 6744 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦) = (𝑦𝐴))
36 fveq1 6645 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
37 fvex 6659 . . . . . . . 8 (𝑧𝐴) ∈ V
3836, 29, 37fvmpt 6744 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧) = (𝑧𝐴))
3935, 38oveqan12d 7152 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4039adantl 484 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) = ((𝑦𝐴)(+g‘(𝑅𝐴))(𝑧𝐴)))
4124, 32, 403eqtr4d 2865 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
4241ralrimivva 3178 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)))
43 eqid 2820 . . . . . 6 (0g𝑌) = (0g𝑌)
448, 43mndidcl 17905 . . . . 5 (𝑌 ∈ Mnd → (0g𝑌) ∈ 𝐵)
45 fveq1 6645 . . . . . 6 (𝑥 = (0g𝑌) → (𝑥𝐴) = ((0g𝑌)‘𝐴))
46 fvex 6659 . . . . . 6 ((0g𝑌)‘𝐴) ∈ V
4745, 29, 46fvmpt 6744 . . . . 5 ((0g𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
485, 44, 473syl 18 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = ((0g𝑌)‘𝐴))
491, 2, 3, 4prds0g 17924 . . . . 5 (𝜑 → (0g𝑅) = (0g𝑌))
5049fveq1d 6648 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = ((0g𝑌)‘𝐴))
51 fvco3 6736 . . . . 5 ((𝑅:𝐼⟶Mnd ∧ 𝐴𝐼) → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
524, 6, 51syl2anc 586 . . . 4 (𝜑 → ((0g𝑅)‘𝐴) = (0g‘(𝑅𝐴)))
5348, 50, 523eqtr2d 2861 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))
5416, 42, 533jca 1124 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴))))
55 eqid 2820 . . 3 (Base‘(𝑅𝐴)) = (Base‘(𝑅𝐴))
56 eqid 2820 . . 3 (+g‘(𝑅𝐴)) = (+g‘(𝑅𝐴))
57 eqid 2820 . . 3 (0g‘(𝑅𝐴)) = (0g‘(𝑅𝐴))
588, 55, 22, 56, 43, 57ismhm 17937 . 2 ((𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)) ↔ ((𝑌 ∈ Mnd ∧ (𝑅𝐴) ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘(𝑅𝐴)) ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑦(+g𝑌)𝑧)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑦)(+g‘(𝑅𝐴))((𝑥𝐵 ↦ (𝑥𝐴))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑥𝐴))‘(0g𝑌)) = (0g‘(𝑅𝐴)))))
595, 7, 54, 58syl21anbrc 1340 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3125  cmpt 5122  ccom 5535   Fn wfn 6326  wf 6327  cfv 6331  (class class class)co 7133  Basecbs 16462  +gcplusg 16544  0gc0g 16692  Xscprds 16698  Mndcmnd 17890   MndHom cmhm 17933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-fz 12877  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-hom 16568  df-cco 16569  df-0g 16694  df-prds 16700  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-mhm 17935
This theorem is referenced by:  pwspjmhm  17973  prdsgsum  19080
  Copyright terms: Public domain W3C validator