MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpmrhm Structured version   Visualization version   GIF version

Theorem m2cpmrhm 21500
Description: The transformation of matrices into constant polynomial matrices is a ring homomorphism. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
m2cpm.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpm.t 𝑇 = (𝑁 matToPolyMat 𝑅)
m2cpm.a 𝐴 = (𝑁 Mat 𝑅)
m2cpm.b 𝐵 = (Base‘𝐴)
m2cpmghm.p 𝑃 = (Poly1𝑅)
m2cpmghm.c 𝐶 = (𝑁 Mat 𝑃)
m2cpmghm.u 𝑈 = (𝐶s 𝑆)
Assertion
Ref Expression
m2cpmrhm ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑈))

Proof of Theorem m2cpmrhm
StepHypRef Expression
1 crngring 19431 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 m2cpm.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
32matring 21197 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
41, 3sylan2 596 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
5 m2cpm.s . . . . 5 𝑆 = (𝑁 ConstPolyMat 𝑅)
6 m2cpmghm.p . . . . 5 𝑃 = (Poly1𝑅)
7 m2cpmghm.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
85, 6, 7cpmatsrgpmat 21475 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶))
91, 8sylan2 596 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (SubRing‘𝐶))
10 m2cpmghm.u . . . 4 𝑈 = (𝐶s 𝑆)
1110subrgring 19660 . . 3 (𝑆 ∈ (SubRing‘𝐶) → 𝑈 ∈ Ring)
129, 11syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑈 ∈ Ring)
13 m2cpm.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
14 m2cpm.b . . . . 5 𝐵 = (Base‘𝐴)
155, 13, 2, 14, 6, 7, 10m2cpmghm 21498 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝑈))
161, 15sylan2 596 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 GrpHom 𝑈))
175, 13, 2, 14, 6, 7, 10m2cpmmhm 21499 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈)))
1816, 17jca 515 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑇 ∈ (𝐴 GrpHom 𝑈) ∧ 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈))))
19 eqid 2739 . . 3 (mulGrp‘𝐴) = (mulGrp‘𝐴)
20 eqid 2739 . . 3 (mulGrp‘𝑈) = (mulGrp‘𝑈)
2119, 20isrhm 19598 . 2 (𝑇 ∈ (𝐴 RingHom 𝑈) ↔ ((𝐴 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝑇 ∈ (𝐴 GrpHom 𝑈) ∧ 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈)))))
224, 12, 18, 21syl21anbrc 1345 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  cfv 6340  (class class class)co 7173  Fincfn 8558  Basecbs 16589  s cress 16590   MndHom cmhm 18073   GrpHom cghm 18476  mulGrpcmgp 19361  Ringcrg 19419  CRingccrg 19420   RingHom crh 19589  SubRingcsubrg 19653  Poly1cpl1 20955   Mat cmat 21161   ConstPolyMat ccpmat 21457   matToPolyMat cmat2pmat 21458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-ot 4526  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-ofr 7429  df-om 7603  df-1st 7717  df-2nd 7718  df-supp 7860  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-er 8323  df-map 8442  df-pm 8443  df-ixp 8511  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fsupp 8910  df-sup 8982  df-oi 9050  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-z 12066  df-dec 12183  df-uz 12328  df-fz 12985  df-fzo 13128  df-seq 13464  df-hash 13786  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-sca 16687  df-vsca 16688  df-ip 16689  df-tset 16690  df-ple 16691  df-ds 16693  df-hom 16695  df-cco 16696  df-0g 16821  df-gsum 16822  df-prds 16827  df-pws 16829  df-mre 16963  df-mrc 16964  df-acs 16966  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-mhm 18075  df-submnd 18076  df-grp 18225  df-minusg 18226  df-sbg 18227  df-mulg 18346  df-subg 18397  df-ghm 18477  df-cntz 18568  df-cmn 19029  df-abl 19030  df-mgp 19362  df-ur 19374  df-srg 19378  df-ring 19421  df-cring 19422  df-rnghom 19592  df-subrg 19655  df-lmod 19758  df-lss 19826  df-sra 20066  df-rgmod 20067  df-dsmm 20551  df-frlm 20566  df-assa 20672  df-ascl 20674  df-psr 20725  df-mvr 20726  df-mpl 20727  df-opsr 20729  df-psr1 20958  df-vr1 20959  df-ply1 20960  df-coe1 20961  df-mamu 21140  df-mat 21162  df-cpmat 21460  df-mat2pmat 21461
This theorem is referenced by:  m2cpmrngiso  21512
  Copyright terms: Public domain W3C validator