| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2cpmrhm | Structured version Visualization version GIF version | ||
| Description: The transformation of matrices into constant polynomial matrices is a ring homomorphism. (Contributed by AV, 18-Nov-2019.) |
| Ref | Expression |
|---|---|
| m2cpm.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| m2cpm.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| m2cpm.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| m2cpm.b | ⊢ 𝐵 = (Base‘𝐴) |
| m2cpmghm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| m2cpmghm.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| m2cpmghm.u | ⊢ 𝑈 = (𝐶 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| m2cpmrhm | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20149 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | m2cpm.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | 2 | matring 22347 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 4 | 1, 3 | sylan2 593 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
| 5 | m2cpm.s | . . . . 5 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
| 6 | m2cpmghm.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 7 | m2cpmghm.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 8 | 5, 6, 7 | cpmatsrgpmat 22625 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶)) |
| 9 | 1, 8 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑆 ∈ (SubRing‘𝐶)) |
| 10 | m2cpmghm.u | . . . 4 ⊢ 𝑈 = (𝐶 ↾s 𝑆) | |
| 11 | 10 | subrgring 20478 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝐶) → 𝑈 ∈ Ring) |
| 12 | 9, 11 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑈 ∈ Ring) |
| 13 | m2cpm.t | . . . . 5 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 14 | m2cpm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 15 | 5, 13, 2, 14, 6, 7, 10 | m2cpmghm 22648 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝑈)) |
| 16 | 1, 15 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 GrpHom 𝑈)) |
| 17 | 5, 13, 2, 14, 6, 7, 10 | m2cpmmhm 22649 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈))) |
| 18 | 16, 17 | jca 511 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑇 ∈ (𝐴 GrpHom 𝑈) ∧ 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈)))) |
| 19 | eqid 2729 | . . 3 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
| 20 | eqid 2729 | . . 3 ⊢ (mulGrp‘𝑈) = (mulGrp‘𝑈) | |
| 21 | 19, 20 | isrhm 20382 | . 2 ⊢ (𝑇 ∈ (𝐴 RingHom 𝑈) ↔ ((𝐴 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝑇 ∈ (𝐴 GrpHom 𝑈) ∧ 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝑈))))) |
| 22 | 4, 12, 18, 21 | syl21anbrc 1345 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 Basecbs 17139 ↾s cress 17160 MndHom cmhm 18674 GrpHom cghm 19110 mulGrpcmgp 20044 Ringcrg 20137 CRingccrg 20138 RingHom crh 20373 SubRingcsubrg 20473 Poly1cpl1 22078 Mat cmat 22311 ConstPolyMat ccpmat 22607 matToPolyMat cmat2pmat 22608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-fzo 13577 df-seq 13928 df-hash 14257 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-hom 17204 df-cco 17205 df-0g 17364 df-gsum 17365 df-prds 17370 df-pws 17372 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-mhm 18676 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-mulg 18966 df-subg 19021 df-ghm 19111 df-cntz 19215 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-srg 20091 df-ring 20139 df-cring 20140 df-rhm 20376 df-subrng 20450 df-subrg 20474 df-lmod 20784 df-lss 20854 df-sra 21096 df-rgmod 21097 df-dsmm 21658 df-frlm 21673 df-assa 21779 df-ascl 21781 df-psr 21835 df-mvr 21836 df-mpl 21837 df-opsr 21839 df-psr1 22081 df-vr1 22082 df-ply1 22083 df-coe1 22084 df-mamu 22295 df-mat 22312 df-cpmat 22610 df-mat2pmat 22611 |
| This theorem is referenced by: m2cpmrngiso 22662 |
| Copyright terms: Public domain | W3C validator |