MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmhm Structured version   Visualization version   GIF version

Theorem mulgmhm 18947
Description: The map from 𝑥 to 𝑛𝑥 for a fixed positive integer 𝑛 is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
mulgmhm.b 𝐵 = (Base‘𝐺)
mulgmhm.m · = (.g𝐺)
Assertion
Ref Expression
mulgmhm ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑀   𝑥, ·

Proof of Theorem mulgmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 18921 . . 3 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21adantr 483 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
3 mulgmhm.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 mulgmhm.m . . . . . . 7 · = (.g𝐺)
53, 4mulgnn0cl 18243 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
61, 5syl3an1 1159 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
763expa 1114 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
87fmpttd 6878 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵)
9 3anass 1091 . . . . . . 7 ((𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵) ↔ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵)))
10 eqid 2821 . . . . . . . 8 (+g𝐺) = (+g𝐺)
113, 4, 10mulgnn0di 18945 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
129, 11sylan2br 596 . . . . . 6 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵))) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1312anassrs 470 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
143, 10mndcl 17918 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
15143expb 1116 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
162, 15sylan 582 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
17 oveq2 7163 . . . . . . 7 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g𝐺)𝑧)))
18 eqid 2821 . . . . . . 7 (𝑥𝐵 ↦ (𝑀 · 𝑥)) = (𝑥𝐵 ↦ (𝑀 · 𝑥))
19 ovex 7188 . . . . . . 7 (𝑀 · (𝑦(+g𝐺)𝑧)) ∈ V
2017, 18, 19fvmpt 6767 . . . . . 6 ((𝑦(+g𝐺)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
2116, 20syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
22 oveq2 7163 . . . . . . . 8 (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦))
23 ovex 7188 . . . . . . . 8 (𝑀 · 𝑦) ∈ V
2422, 18, 23fvmpt 6767 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦))
25 oveq2 7163 . . . . . . . 8 (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧))
26 ovex 7188 . . . . . . . 8 (𝑀 · 𝑧) ∈ V
2725, 18, 26fvmpt 6767 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧))
2824, 27oveqan12d 7174 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
2928adantl 484 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
3013, 21, 293eqtr4d 2866 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
3130ralrimivva 3191 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
32 eqid 2821 . . . . . 6 (0g𝐺) = (0g𝐺)
333, 32mndidcl 17925 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
34 oveq2 7163 . . . . . 6 (𝑥 = (0g𝐺) → (𝑀 · 𝑥) = (𝑀 · (0g𝐺)))
35 ovex 7188 . . . . . 6 (𝑀 · (0g𝐺)) ∈ V
3634, 18, 35fvmpt 6767 . . . . 5 ((0g𝐺) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
372, 33, 363syl 18 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
383, 4, 32mulgnn0z 18253 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
391, 38sylan 582 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
4037, 39eqtrd 2856 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))
418, 31, 403jca 1124 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺)))
423, 3, 10, 10, 32, 32ismhm 17957 . 2 ((𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))))
432, 2, 41, 42syl21anbrc 1340 1 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  0cn0 11896  Basecbs 16482  +gcplusg 16564  0gc0g 16712  Mndcmnd 17910   MndHom cmhm 17953  .gcmg 18223  CMndccmn 18905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033  df-seq 13369  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-mulg 18224  df-cmn 18907
This theorem is referenced by:  gsummulglem  19060
  Copyright terms: Public domain W3C validator