Step | Hyp | Ref
| Expression |
1 | | cmnmnd 19317 |
. . 3
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
2 | 1 | adantr 480 |
. 2
⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
→ 𝐺 ∈
Mnd) |
3 | | mulgmhm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
4 | | mulgmhm.m |
. . . . . . 7
⊢ · =
(.g‘𝐺) |
5 | 3, 4 | mulgnn0cl 18635 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0
∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
6 | 1, 5 | syl3an1 1161 |
. . . . 5
⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0
∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
7 | 6 | 3expa 1116 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈ 𝐵) → (𝑀 · 𝑥) ∈ 𝐵) |
8 | 7 | fmpttd 6971 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
→ (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)):𝐵⟶𝐵) |
9 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ0
∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑀 ∈ ℕ0 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) |
10 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
11 | 3, 4, 10 | mulgnn0di 19342 |
. . . . . . 7
⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
12 | 9, 11 | sylan2br 594 |
. . . . . 6
⊢ ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0
∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
13 | 12 | anassrs 467 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑀 · (𝑦(+g‘𝐺)𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
14 | 3, 10 | mndcl 18308 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
15 | 14 | 3expb 1118 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
16 | 2, 15 | sylan 579 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
17 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
18 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) |
19 | | ovex 7288 |
. . . . . . 7
⊢ (𝑀 · (𝑦(+g‘𝐺)𝑧)) ∈ V |
20 | 17, 18, 19 | fvmpt 6857 |
. . . . . 6
⊢ ((𝑦(+g‘𝐺)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
21 | 16, 20 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (𝑀 · (𝑦(+g‘𝐺)𝑧))) |
22 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦)) |
23 | | ovex 7288 |
. . . . . . . 8
⊢ (𝑀 · 𝑦) ∈ V |
24 | 22, 18, 23 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦)) |
25 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧)) |
26 | | ovex 7288 |
. . . . . . . 8
⊢ (𝑀 · 𝑧) ∈ V |
27 | 25, 18, 26 | fvmpt 6857 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧)) |
28 | 24, 27 | oveqan12d 7274 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
29 | 28 | adantl 481 |
. . . . 5
⊢ (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g‘𝐺)(𝑀 · 𝑧))) |
30 | 13, 21, 29 | 3eqtr4d 2788 |
. . . 4
⊢ (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧))) |
31 | 30 | ralrimivva 3114 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
→ ∀𝑦 ∈
𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧))) |
32 | | eqid 2738 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
33 | 3, 32 | mndidcl 18315 |
. . . . 5
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝐵) |
34 | | oveq2 7263 |
. . . . . 6
⊢ (𝑥 = (0g‘𝐺) → (𝑀 · 𝑥) = (𝑀 ·
(0g‘𝐺))) |
35 | | ovex 7288 |
. . . . . 6
⊢ (𝑀 ·
(0g‘𝐺))
∈ V |
36 | 34, 18, 35 | fvmpt 6857 |
. . . . 5
⊢
((0g‘𝐺) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(0g‘𝐺)) = (𝑀 ·
(0g‘𝐺))) |
37 | 2, 33, 36 | 3syl 18 |
. . . 4
⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
→ ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(0g‘𝐺)) = (𝑀 ·
(0g‘𝐺))) |
38 | 3, 4, 32 | mulgnn0z 18645 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0)
→ (𝑀 ·
(0g‘𝐺)) =
(0g‘𝐺)) |
39 | 1, 38 | sylan 579 |
. . . 4
⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
→ (𝑀 ·
(0g‘𝐺)) =
(0g‘𝐺)) |
40 | 37, 39 | eqtrd 2778 |
. . 3
⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
→ ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(0g‘𝐺)) = (0g‘𝐺)) |
41 | 8, 31, 40 | 3jca 1126 |
. 2
⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
→ ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)):𝐵⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(0g‘𝐺)) = (0g‘𝐺))) |
42 | 3, 3, 10, 10, 32, 32 | ismhm 18347 |
. 2
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)):𝐵⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g‘𝐺)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g‘𝐺)((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥))‘(0g‘𝐺)) = (0g‘𝐺)))) |
43 | 2, 2, 41, 42 | syl21anbrc 1342 |
1
⊢ ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0)
→ (𝑥 ∈ 𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺)) |