MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmhm Structured version   Visualization version   GIF version

Theorem mulgmhm 18587
Description: The map from 𝑥 to 𝑛𝑥 for a fixed positive integer 𝑛 is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
mulgmhm.b 𝐵 = (Base‘𝐺)
mulgmhm.m · = (.g𝐺)
Assertion
Ref Expression
mulgmhm ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑀   𝑥, ·

Proof of Theorem mulgmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 18562 . . . 4 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21adantr 474 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
32, 2jca 509 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝐺 ∈ Mnd ∧ 𝐺 ∈ Mnd))
4 mulgmhm.b . . . . . . 7 𝐵 = (Base‘𝐺)
5 mulgmhm.m . . . . . . 7 · = (.g𝐺)
64, 5mulgnn0cl 17912 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
71, 6syl3an1 1208 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
873expa 1153 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
98fmpttd 6635 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵)
10 3anass 1122 . . . . . . 7 ((𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵) ↔ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵)))
11 eqid 2826 . . . . . . . 8 (+g𝐺) = (+g𝐺)
124, 5, 11mulgnn0di 18585 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1310, 12sylan2br 590 . . . . . 6 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵))) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1413anassrs 461 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
154, 11mndcl 17655 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
16153expb 1155 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
172, 16sylan 577 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
18 oveq2 6914 . . . . . . 7 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g𝐺)𝑧)))
19 eqid 2826 . . . . . . 7 (𝑥𝐵 ↦ (𝑀 · 𝑥)) = (𝑥𝐵 ↦ (𝑀 · 𝑥))
20 ovex 6938 . . . . . . 7 (𝑀 · (𝑦(+g𝐺)𝑧)) ∈ V
2118, 19, 20fvmpt 6530 . . . . . 6 ((𝑦(+g𝐺)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
2217, 21syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
23 oveq2 6914 . . . . . . . 8 (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦))
24 ovex 6938 . . . . . . . 8 (𝑀 · 𝑦) ∈ V
2523, 19, 24fvmpt 6530 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦))
26 oveq2 6914 . . . . . . . 8 (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧))
27 ovex 6938 . . . . . . . 8 (𝑀 · 𝑧) ∈ V
2826, 19, 27fvmpt 6530 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧))
2925, 28oveqan12d 6925 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
3029adantl 475 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
3114, 22, 303eqtr4d 2872 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
3231ralrimivva 3181 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
33 eqid 2826 . . . . . 6 (0g𝐺) = (0g𝐺)
344, 33mndidcl 17662 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
35 oveq2 6914 . . . . . 6 (𝑥 = (0g𝐺) → (𝑀 · 𝑥) = (𝑀 · (0g𝐺)))
36 ovex 6938 . . . . . 6 (𝑀 · (0g𝐺)) ∈ V
3735, 19, 36fvmpt 6530 . . . . 5 ((0g𝐺) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
382, 34, 373syl 18 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
394, 5, 33mulgnn0z 17921 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
401, 39sylan 577 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
4138, 40eqtrd 2862 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))
429, 32, 413jca 1164 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺)))
434, 4, 11, 11, 33, 33ismhm 17691 . 2 ((𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))))
443, 42, 43sylanbrc 580 1 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3118  cmpt 4953  wf 6120  cfv 6124  (class class class)co 6906  0cn0 11619  Basecbs 16223  +gcplusg 16306  0gc0g 16454  Mndcmnd 17648   MndHom cmhm 17687  .gcmg 17895  CMndccmn 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-fzo 12762  df-seq 13097  df-0g 16456  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-mhm 17689  df-mulg 17896  df-cmn 18549
This theorem is referenced by:  gsummulglem  18695
  Copyright terms: Public domain W3C validator