MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmhm Structured version   Visualization version   GIF version

Theorem mulgmhm 19820
Description: The map from 𝑥 to 𝑛𝑥 for a fixed positive integer 𝑛 is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
mulgmhm.b 𝐵 = (Base‘𝐺)
mulgmhm.m · = (.g𝐺)
Assertion
Ref Expression
mulgmhm ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑀   𝑥, ·

Proof of Theorem mulgmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 19790 . . 3 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
21adantr 479 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → 𝐺 ∈ Mnd)
3 mulgmhm.b . . . . . . 7 𝐵 = (Base‘𝐺)
4 mulgmhm.m . . . . . . 7 · = (.g𝐺)
53, 4mulgnn0cl 19079 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
61, 5syl3an1 1160 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
763expa 1115 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ 𝑥𝐵) → (𝑀 · 𝑥) ∈ 𝐵)
87fmpttd 7128 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵)
9 3anass 1092 . . . . . . 7 ((𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵) ↔ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵)))
10 eqid 2725 . . . . . . . 8 (+g𝐺) = (+g𝐺)
113, 4, 10mulgnn0di 19818 . . . . . . 7 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
129, 11sylan2br 593 . . . . . 6 ((𝐺 ∈ CMnd ∧ (𝑀 ∈ ℕ0 ∧ (𝑦𝐵𝑧𝐵))) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
1312anassrs 466 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑀 · (𝑦(+g𝐺)𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
143, 10mndcl 18730 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
15143expb 1117 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
162, 15sylan 578 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
17 oveq2 7431 . . . . . . 7 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑀 · 𝑥) = (𝑀 · (𝑦(+g𝐺)𝑧)))
18 eqid 2725 . . . . . . 7 (𝑥𝐵 ↦ (𝑀 · 𝑥)) = (𝑥𝐵 ↦ (𝑀 · 𝑥))
19 ovex 7456 . . . . . . 7 (𝑀 · (𝑦(+g𝐺)𝑧)) ∈ V
2017, 18, 19fvmpt 7008 . . . . . 6 ((𝑦(+g𝐺)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
2116, 20syl 17 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (𝑀 · (𝑦(+g𝐺)𝑧)))
22 oveq2 7431 . . . . . . . 8 (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦))
23 ovex 7456 . . . . . . . 8 (𝑀 · 𝑦) ∈ V
2422, 18, 23fvmpt 7008 . . . . . . 7 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦) = (𝑀 · 𝑦))
25 oveq2 7431 . . . . . . . 8 (𝑥 = 𝑧 → (𝑀 · 𝑥) = (𝑀 · 𝑧))
26 ovex 7456 . . . . . . . 8 (𝑀 · 𝑧) ∈ V
2725, 18, 26fvmpt 7008 . . . . . . 7 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧) = (𝑀 · 𝑧))
2824, 27oveqan12d 7442 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
2928adantl 480 . . . . 5 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) = ((𝑀 · 𝑦)(+g𝐺)(𝑀 · 𝑧)))
3013, 21, 293eqtr4d 2775 . . . 4 (((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
3130ralrimivva 3190 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)))
32 eqid 2725 . . . . . 6 (0g𝐺) = (0g𝐺)
333, 32mndidcl 18737 . . . . 5 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
34 oveq2 7431 . . . . . 6 (𝑥 = (0g𝐺) → (𝑀 · 𝑥) = (𝑀 · (0g𝐺)))
35 ovex 7456 . . . . . 6 (𝑀 · (0g𝐺)) ∈ V
3634, 18, 35fvmpt 7008 . . . . 5 ((0g𝐺) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
372, 33, 363syl 18 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (𝑀 · (0g𝐺)))
383, 4, 32mulgnn0z 19090 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
391, 38sylan 578 . . . 4 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
4037, 39eqtrd 2765 . . 3 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))
418, 31, 403jca 1125 . 2 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺)))
423, 3, 10, 10, 32, 32ismhm 18770 . 2 ((𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ Mnd) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥)):𝐵𝐵 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(𝑦(+g𝐺)𝑧)) = (((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑦)(+g𝐺)((𝑥𝐵 ↦ (𝑀 · 𝑥))‘𝑧)) ∧ ((𝑥𝐵 ↦ (𝑀 · 𝑥))‘(0g𝐺)) = (0g𝐺))))
432, 2, 41, 42syl21anbrc 1341 1 ((𝐺 ∈ CMnd ∧ 𝑀 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑀 · 𝑥)) ∈ (𝐺 MndHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  cmpt 5235  wf 6549  cfv 6553  (class class class)co 7423  0cn0 12519  Basecbs 17208  +gcplusg 17261  0gc0g 17449  Mndcmnd 18722   MndHom cmhm 18766  .gcmg 19056  CMndccmn 19773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-map 8856  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-n0 12520  df-z 12606  df-uz 12870  df-fz 13534  df-fzo 13677  df-seq 14017  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-mulg 19057  df-cmn 19775
This theorem is referenced by:  gsummulglem  19934
  Copyright terms: Public domain W3C validator