| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat2pmatmhm | Structured version Visualization version GIF version | ||
| Description: The transformation of matrices into polynomial matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 29-Oct-2019.) |
| Ref | Expression |
|---|---|
| mat2pmatbas.t | ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| mat2pmatbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mat2pmatbas.b | ⊢ 𝐵 = (Base‘𝐴) |
| mat2pmatbas.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| mat2pmatbas.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| mat2pmatbas0.h | ⊢ 𝐻 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| mat2pmatmhm | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20154 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | mat2pmatbas.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | 2 | matring 22330 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 4 | 1, 3 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
| 5 | eqid 2729 | . . . 4 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
| 6 | 5 | ringmgp 20148 | . . 3 ⊢ (𝐴 ∈ Ring → (mulGrp‘𝐴) ∈ Mnd) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (mulGrp‘𝐴) ∈ Mnd) |
| 8 | mat2pmatbas.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 9 | 8 | ply1ring 22132 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 10 | 1, 9 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
| 11 | mat2pmatbas.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 12 | 11 | matring 22330 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝐶 ∈ Ring) |
| 13 | 10, 12 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ Ring) |
| 14 | eqid 2729 | . . . 4 ⊢ (mulGrp‘𝐶) = (mulGrp‘𝐶) | |
| 15 | 14 | ringmgp 20148 | . . 3 ⊢ (𝐶 ∈ Ring → (mulGrp‘𝐶) ∈ Mnd) |
| 16 | 13, 15 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (mulGrp‘𝐶) ∈ Mnd) |
| 17 | mat2pmatbas.t | . . . . 5 ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) | |
| 18 | mat2pmatbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 19 | mat2pmatbas0.h | . . . . 5 ⊢ 𝐻 = (Base‘𝐶) | |
| 20 | 17, 2, 18, 8, 11, 19 | mat2pmatf 22615 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵⟶𝐻) |
| 21 | 1, 20 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇:𝐵⟶𝐻) |
| 22 | 17, 2, 18, 8, 11, 19 | mat2pmatmul 22618 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑇‘(𝑥(.r‘𝐴)𝑦)) = ((𝑇‘𝑥)(.r‘𝐶)(𝑇‘𝑦))) |
| 23 | 17, 2, 18, 8, 11, 19 | mat2pmat1 22619 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r‘𝐴)) = (1r‘𝐶)) |
| 24 | 1, 23 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑇‘(1r‘𝐴)) = (1r‘𝐶)) |
| 25 | 21, 22, 24 | 3jca 1128 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑇:𝐵⟶𝐻 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑇‘(𝑥(.r‘𝐴)𝑦)) = ((𝑇‘𝑥)(.r‘𝐶)(𝑇‘𝑦)) ∧ (𝑇‘(1r‘𝐴)) = (1r‘𝐶))) |
| 26 | 5, 18 | mgpbas 20054 | . . 3 ⊢ 𝐵 = (Base‘(mulGrp‘𝐴)) |
| 27 | 14, 19 | mgpbas 20054 | . . 3 ⊢ 𝐻 = (Base‘(mulGrp‘𝐶)) |
| 28 | eqid 2729 | . . . 4 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 29 | 5, 28 | mgpplusg 20053 | . . 3 ⊢ (.r‘𝐴) = (+g‘(mulGrp‘𝐴)) |
| 30 | eqid 2729 | . . . 4 ⊢ (.r‘𝐶) = (.r‘𝐶) | |
| 31 | 14, 30 | mgpplusg 20053 | . . 3 ⊢ (.r‘𝐶) = (+g‘(mulGrp‘𝐶)) |
| 32 | eqid 2729 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 33 | 5, 32 | ringidval 20092 | . . 3 ⊢ (1r‘𝐴) = (0g‘(mulGrp‘𝐴)) |
| 34 | eqid 2729 | . . . 4 ⊢ (1r‘𝐶) = (1r‘𝐶) | |
| 35 | 14, 34 | ringidval 20092 | . . 3 ⊢ (1r‘𝐶) = (0g‘(mulGrp‘𝐶)) |
| 36 | 26, 27, 29, 31, 33, 35 | ismhm 18712 | . 2 ⊢ (𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝐶)) ↔ (((mulGrp‘𝐴) ∈ Mnd ∧ (mulGrp‘𝐶) ∈ Mnd) ∧ (𝑇:𝐵⟶𝐻 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑇‘(𝑥(.r‘𝐴)𝑦)) = ((𝑇‘𝑥)(.r‘𝐶)(𝑇‘𝑦)) ∧ (𝑇‘(1r‘𝐴)) = (1r‘𝐶)))) |
| 37 | 7, 16, 25, 36 | syl21anbrc 1345 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 Basecbs 17179 .rcmulr 17221 Mndcmnd 18661 MndHom cmhm 18708 mulGrpcmgp 20049 1rcur 20090 Ringcrg 20142 CRingccrg 20143 Poly1cpl1 22061 Mat cmat 22294 matToPolyMat cmat2pmat 22591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-assa 21762 df-ascl 21764 df-psr 21818 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-ply1 22066 df-mamu 22278 df-mat 22295 df-mat2pmat 22594 |
| This theorem is referenced by: mat2pmatrhm 22621 m2cpmmhm 22632 cayhamlem4 22775 |
| Copyright terms: Public domain | W3C validator |