Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatrhm | Structured version Visualization version GIF version |
Description: There is a ring homomorphism from a ring to the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019.) |
Ref | Expression |
---|---|
scmatrhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatrhmval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatrhmval.o | ⊢ 1 = (1r‘𝐴) |
scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
scmatrhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
scmatrhmval.c | ⊢ 𝐶 = (𝑁 ScMat 𝑅) |
scmatghm.s | ⊢ 𝑆 = (𝐴 ↾s 𝐶) |
Ref | Expression |
---|---|
scmatrhm | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
2 | scmatrhmval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | eqid 2736 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
4 | scmatrhmval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
5 | eqid 2736 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | scmatrhmval.c | . . . 4 ⊢ 𝐶 = (𝑁 ScMat 𝑅) | |
7 | 2, 3, 4, 5, 6 | scmatsrng 21776 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubRing‘𝐴)) |
8 | scmatghm.s | . . . 4 ⊢ 𝑆 = (𝐴 ↾s 𝐶) | |
9 | 8 | subrgring 20133 | . . 3 ⊢ (𝐶 ∈ (SubRing‘𝐴) → 𝑆 ∈ Ring) |
10 | 7, 9 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ Ring) |
11 | scmatrhmval.o | . . . 4 ⊢ 1 = (1r‘𝐴) | |
12 | scmatrhmval.t | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
13 | scmatrhmval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) | |
14 | 4, 2, 11, 12, 13, 6, 8 | scmatghm 21789 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
15 | eqid 2736 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
16 | eqid 2736 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
17 | 4, 2, 11, 12, 13, 6, 8, 15, 16 | scmatmhm 21790 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
18 | 14, 17 | jca 512 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
19 | 15, 16 | isrhm 20061 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
20 | 1, 10, 18, 19 | syl21anbrc 1343 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ↦ cmpt 5176 ‘cfv 6480 (class class class)co 7338 Fincfn 8805 Basecbs 17010 ↾s cress 17039 ·𝑠 cvsca 17064 0gc0g 17248 MndHom cmhm 18526 GrpHom cghm 18928 mulGrpcmgp 19816 1rcur 19833 Ringcrg 19879 RingHom crh 20052 SubRingcsubrg 20126 Mat cmat 21661 ScMat cscmat 21745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-sup 9300 df-oi 9368 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-uz 12685 df-fz 13342 df-fzo 13485 df-seq 13824 df-hash 14147 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-hom 17084 df-cco 17085 df-0g 17250 df-gsum 17251 df-prds 17256 df-pws 17258 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-ghm 18929 df-cntz 19020 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-ring 19881 df-rnghom 20055 df-subrg 20128 df-lmod 20232 df-lss 20301 df-sra 20541 df-rgmod 20542 df-dsmm 21046 df-frlm 21061 df-mamu 21640 df-mat 21662 df-dmat 21746 df-scmat 21747 |
This theorem is referenced by: scmatrngiso 21792 |
Copyright terms: Public domain | W3C validator |