| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmmhm | Structured version Visualization version GIF version | ||
| Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| ghmmhm | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp1 19157 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
| 2 | 1 | grpmndd 18885 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Mnd) |
| 3 | ghmgrp2 19158 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
| 4 | 3 | grpmndd 18885 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Mnd) |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 6 | eqid 2730 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 7 | 5, 6 | ghmf 19159 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 8 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 9 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 10 | 5, 8, 9 | ghmlin 19160 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 11 | 10 | 3expb 1120 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 12 | 11 | ralrimivva 3181 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 13 | eqid 2730 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 14 | eqid 2730 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 15 | 13, 14 | ghmid 19161 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
| 16 | 7, 12, 15 | 3jca 1128 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
| 17 | 5, 6, 8, 9, 13, 14 | ismhm 18719 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
| 18 | 2, 4, 16, 17 | syl21anbrc 1345 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 MndHom cmhm 18715 GrpHom cghm 19151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-grp 18875 df-ghm 19152 |
| This theorem is referenced by: ghmmhmb 19166 ghmmulg 19167 resghm2 19172 ghmco 19175 ghmeql 19178 symgtrinv 19409 frgpup3lem 19714 gsummulglem 19878 gsumzinv 19882 gsuminv 19883 gsummulc1OLD 20230 gsummulc2OLD 20231 gsummulc1 20232 gsummulc2 20233 pwsco2rhm 20419 gsumvsmul 20839 rhmpreimaidl 21194 zrhpsgnmhm 21500 evlslem2 21993 evlsgsumadd 22005 evls1gsumadd 22218 rhmcomulmpl 22276 rhmmpl 22277 rhmply1vsca 22282 mat2pmatmul 22625 pm2mp 22719 cayhamlem4 22782 tsmsinv 24042 plypf1 26124 amgmlem 26907 lgseisenlem4 27296 gsumvsmul1 32998 gsummulgc2 33007 algextdeglem8 33721 rhmcomulpsr 42546 rhmpsr 42547 selvcllem4 42576 selvvvval 42580 evlselv 42582 selvadd 42583 selvmul 42584 mendring 43184 amgmwlem 49795 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |