MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmhm Structured version   Visualization version   GIF version

Theorem ghmmhm 19209
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhm (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))

Proof of Theorem ghmmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 19201 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
21grpmndd 18929 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Mnd)
3 ghmgrp2 19202 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
43grpmndd 18929 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Mnd)
5 eqid 2735 . . . 4 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2735 . . . 4 (Base‘𝑇) = (Base‘𝑇)
75, 6ghmf 19203 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
8 eqid 2735 . . . . . 6 (+g𝑆) = (+g𝑆)
9 eqid 2735 . . . . . 6 (+g𝑇) = (+g𝑇)
105, 8, 9ghmlin 19204 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
11103expb 1120 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
1211ralrimivva 3187 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
13 eqid 2735 . . . 4 (0g𝑆) = (0g𝑆)
14 eqid 2735 . . . 4 (0g𝑇) = (0g𝑇)
1513, 14ghmid 19205 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
167, 12, 153jca 1128 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
175, 6, 8, 9, 13, 14ismhm 18763 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
182, 4, 16, 17syl21anbrc 1345 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Mndcmnd 18712   MndHom cmhm 18759   GrpHom cghm 19195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-ghm 19196
This theorem is referenced by:  ghmmhmb  19210  ghmmulg  19211  resghm2  19216  ghmco  19219  ghmeql  19222  symgtrinv  19453  frgpup3lem  19758  gsummulglem  19922  gsumzinv  19926  gsuminv  19927  gsummulc1OLD  20274  gsummulc2OLD  20275  gsummulc1  20276  gsummulc2  20277  pwsco2rhm  20463  gsumvsmul  20883  rhmpreimaidl  21238  zrhpsgnmhm  21544  evlslem2  22037  evlsgsumadd  22049  evls1gsumadd  22262  rhmcomulmpl  22320  rhmmpl  22321  rhmply1vsca  22326  mat2pmatmul  22669  pm2mp  22763  cayhamlem4  22826  tsmsinv  24086  plypf1  26169  amgmlem  26952  lgseisenlem4  27341  gsumvsmul1  33045  gsummulgc2  33054  algextdeglem8  33758  rhmcomulpsr  42574  rhmpsr  42575  selvcllem4  42604  selvvvval  42608  evlselv  42610  selvadd  42611  selvmul  42612  mendring  43212  amgmwlem  49666  amgmlemALT  49667
  Copyright terms: Public domain W3C validator