MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmhm Structured version   Visualization version   GIF version

Theorem ghmmhm 19096
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhm (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))

Proof of Theorem ghmmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 19088 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
21grpmndd 18828 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Mnd)
3 ghmgrp2 19089 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
43grpmndd 18828 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Mnd)
5 eqid 2733 . . . 4 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2733 . . . 4 (Base‘𝑇) = (Base‘𝑇)
75, 6ghmf 19090 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
8 eqid 2733 . . . . . 6 (+g𝑆) = (+g𝑆)
9 eqid 2733 . . . . . 6 (+g𝑇) = (+g𝑇)
105, 8, 9ghmlin 19091 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
11103expb 1121 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
1211ralrimivva 3201 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
13 eqid 2733 . . . 4 (0g𝑆) = (0g𝑆)
14 eqid 2733 . . . 4 (0g𝑇) = (0g𝑇)
1513, 14ghmid 19092 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
167, 12, 153jca 1129 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
175, 6, 8, 9, 13, 14ismhm 18669 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
182, 4, 16, 17syl21anbrc 1345 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wf 6536  cfv 6540  (class class class)co 7404  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Mndcmnd 18621   MndHom cmhm 18665   GrpHom cghm 19083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8818  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-ghm 19084
This theorem is referenced by:  ghmmhmb  19097  ghmmulg  19098  resghm2  19103  ghmco  19106  ghmeql  19109  symgtrinv  19333  frgpup3lem  19638  gsummulglem  19801  gsumzinv  19805  gsuminv  19806  gsummulc1OLD  20116  gsummulc2OLD  20117  gsummulc1  20118  gsummulc2  20119  pwsco2rhm  20267  gsumvsmul  20524  zrhpsgnmhm  21121  evlslem2  21624  evlsgsumadd  21636  evls1gsumadd  21825  mat2pmatmul  22215  pm2mp  22309  cayhamlem4  22372  tsmsinv  23634  plypf1  25708  amgmlem  26474  lgseisenlem4  26861  gsumvsmul1  32181  rhmpreimaidl  32499  rhmcomulmpl  41074  rhmmpl  41075  selvcllem4  41103  selvvvval  41107  evlselv  41109  selvadd  41110  selvmul  41111  mendring  41867  amgmwlem  47751  amgmlemALT  47752
  Copyright terms: Public domain W3C validator