MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmhm Structured version   Visualization version   GIF version

Theorem ghmmhm 18139
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhm (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))

Proof of Theorem ghmmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 18131 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 grpmnd 17898 . . 3 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
31, 2syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Mnd)
4 ghmgrp2 18132 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
5 grpmnd 17898 . . 3 (𝑇 ∈ Grp → 𝑇 ∈ Mnd)
64, 5syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Mnd)
7 eqid 2778 . . . 4 (Base‘𝑆) = (Base‘𝑆)
8 eqid 2778 . . . 4 (Base‘𝑇) = (Base‘𝑇)
97, 8ghmf 18133 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
10 eqid 2778 . . . . . 6 (+g𝑆) = (+g𝑆)
11 eqid 2778 . . . . . 6 (+g𝑇) = (+g𝑇)
127, 10, 11ghmlin 18134 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
13123expb 1100 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
1413ralrimivva 3141 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
15 eqid 2778 . . . 4 (0g𝑆) = (0g𝑆)
16 eqid 2778 . . . 4 (0g𝑇) = (0g𝑇)
1715, 16ghmid 18135 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
189, 14, 173jca 1108 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
197, 8, 10, 11, 15, 16ismhm 17805 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
203, 6, 18, 19syl21anbrc 1324 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1068   = wceq 1507  wcel 2050  wral 3088  wf 6184  cfv 6188  (class class class)co 6976  Basecbs 16339  +gcplusg 16421  0gc0g 16569  Mndcmnd 17762   MndHom cmhm 17801  Grpcgrp 17891   GrpHom cghm 18126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-map 8208  df-0g 16571  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-mhm 17803  df-grp 17894  df-ghm 18127
This theorem is referenced by:  ghmmhmb  18140  ghmmulg  18141  resghm2  18146  ghmco  18149  ghmeql  18152  symgtrinv  18361  frgpup3lem  18663  gsummulglem  18814  gsumzinv  18818  gsuminv  18819  gsummulc1  19079  gsummulc2  19080  pwsco2rhm  19214  gsumvsmul  19420  evlslem2  20005  evls1gsumadd  20190  zrhpsgnmhm  20430  mat2pmatmul  21043  pm2mp  21137  cayhamlem4  21200  tsmsinv  22459  plypf1  24505  amgmlem  25269  lgseisenlem4  25656  gsumvsmul1  30534  mendring  39194  amgmwlem  44276  amgmlemALT  44277
  Copyright terms: Public domain W3C validator