| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmmhm | Structured version Visualization version GIF version | ||
| Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| ghmmhm | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp1 19130 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
| 2 | 1 | grpmndd 18859 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Mnd) |
| 3 | ghmgrp2 19131 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
| 4 | 3 | grpmndd 18859 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Mnd) |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 6 | eqid 2731 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 7 | 5, 6 | ghmf 19132 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 8 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 9 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 10 | 5, 8, 9 | ghmlin 19133 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 11 | 10 | 3expb 1120 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 12 | 11 | ralrimivva 3175 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
| 13 | eqid 2731 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 14 | eqid 2731 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 15 | 13, 14 | ghmid 19134 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
| 16 | 7, 12, 15 | 3jca 1128 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
| 17 | 5, 6, 8, 9, 13, 14 | ismhm 18693 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
| 18 | 2, 4, 16, 17 | syl21anbrc 1345 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 MndHom cmhm 18689 GrpHom cghm 19124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-ghm 19125 |
| This theorem is referenced by: ghmmhmb 19139 ghmmulg 19140 resghm2 19145 ghmco 19148 ghmeql 19151 symgtrinv 19384 frgpup3lem 19689 gsummulglem 19853 gsumzinv 19857 gsuminv 19858 gsummulc1OLD 20232 gsummulc2OLD 20233 gsummulc1 20234 gsummulc2 20235 pwsco2rhm 20418 gsumvsmul 20859 rhmpreimaidl 21214 zrhpsgnmhm 21521 evlslem2 22014 evlsgsumadd 22026 evls1gsumadd 22239 rhmcomulmpl 22297 rhmmpl 22298 rhmply1vsca 22303 mat2pmatmul 22646 pm2mp 22740 cayhamlem4 22803 tsmsinv 24063 plypf1 26144 amgmlem 26927 lgseisenlem4 27316 gsumvsmul1 33031 gsummulgc2 33040 fxpsubg 33142 algextdeglem8 33737 rhmcomulpsr 42643 rhmpsr 42644 selvcllem4 42673 selvvvval 42677 evlselv 42679 selvadd 42680 selvmul 42681 mendring 43280 amgmwlem 49902 amgmlemALT 49903 |
| Copyright terms: Public domain | W3C validator |