Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ghmmhm | Structured version Visualization version GIF version |
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
ghmmhm | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 18441 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
2 | grpmnd 18190 | . . 3 ⊢ (𝑆 ∈ Grp → 𝑆 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Mnd) |
4 | ghmgrp2 18442 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
5 | grpmnd 18190 | . . 3 ⊢ (𝑇 ∈ Grp → 𝑇 ∈ Mnd) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Mnd) |
7 | eqid 2758 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
8 | eqid 2758 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
9 | 7, 8 | ghmf 18443 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
10 | eqid 2758 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
11 | eqid 2758 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
12 | 7, 10, 11 | ghmlin 18444 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
13 | 12 | 3expb 1117 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
14 | 13 | ralrimivva 3120 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
15 | eqid 2758 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
16 | eqid 2758 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
17 | 15, 16 | ghmid 18445 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
18 | 9, 14, 17 | 3jca 1125 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
19 | 7, 8, 10, 11, 15, 16 | ismhm 18038 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
20 | 3, 6, 18, 19 | syl21anbrc 1341 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⟶wf 6336 ‘cfv 6340 (class class class)co 7156 Basecbs 16555 +gcplusg 16637 0gc0g 16785 Mndcmnd 17991 MndHom cmhm 18034 Grpcgrp 18183 GrpHom cghm 18436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-map 8424 df-0g 16787 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-mhm 18036 df-grp 18186 df-ghm 18437 |
This theorem is referenced by: ghmmhmb 18450 ghmmulg 18451 resghm2 18456 ghmco 18459 ghmeql 18462 symgtrinv 18681 frgpup3lem 18984 gsummulglem 19143 gsumzinv 19147 gsuminv 19148 gsummulc1 19441 gsummulc2 19442 pwsco2rhm 19576 gsumvsmul 19780 zrhpsgnmhm 20363 evlslem2 20856 evlsgsumadd 20868 evls1gsumadd 21057 mat2pmatmul 21445 pm2mp 21539 cayhamlem4 21602 tsmsinv 22862 plypf1 24922 amgmlem 25688 lgseisenlem4 26075 gsumvsmul1 30850 rhmpreimaidl 31137 mendring 40554 amgmwlem 45827 amgmlemALT 45828 |
Copyright terms: Public domain | W3C validator |