MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmhm Structured version   Visualization version   GIF version

Theorem ghmmhm 18370
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
ghmmhm (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))

Proof of Theorem ghmmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 18362 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 grpmnd 18112 . . 3 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
31, 2syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Mnd)
4 ghmgrp2 18363 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
5 grpmnd 18112 . . 3 (𝑇 ∈ Grp → 𝑇 ∈ Mnd)
64, 5syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Mnd)
7 eqid 2823 . . . 4 (Base‘𝑆) = (Base‘𝑆)
8 eqid 2823 . . . 4 (Base‘𝑇) = (Base‘𝑇)
97, 8ghmf 18364 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
10 eqid 2823 . . . . . 6 (+g𝑆) = (+g𝑆)
11 eqid 2823 . . . . . 6 (+g𝑇) = (+g𝑇)
127, 10, 11ghmlin 18365 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
13123expb 1116 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
1413ralrimivva 3193 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
15 eqid 2823 . . . 4 (0g𝑆) = (0g𝑆)
16 eqid 2823 . . . 4 (0g𝑇) = (0g𝑇)
1715, 16ghmid 18366 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
189, 14, 173jca 1124 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
197, 8, 10, 11, 15, 16ismhm 17960 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
203, 6, 18, 19syl21anbrc 1340 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wf 6353  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Mndcmnd 17913   MndHom cmhm 17956  Grpcgrp 18105   GrpHom cghm 18357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-grp 18108  df-ghm 18358
This theorem is referenced by:  ghmmhmb  18371  ghmmulg  18372  resghm2  18377  ghmco  18380  ghmeql  18383  symgtrinv  18602  frgpup3lem  18905  gsummulglem  19063  gsumzinv  19067  gsuminv  19068  gsummulc1  19358  gsummulc2  19359  pwsco2rhm  19493  gsumvsmul  19700  evlslem2  20294  evlsgsumadd  20306  evls1gsumadd  20489  zrhpsgnmhm  20730  mat2pmatmul  21341  pm2mp  21435  cayhamlem4  21498  tsmsinv  22758  plypf1  24804  amgmlem  25569  lgseisenlem4  25956  gsumvsmul1  30691  mendring  39799  amgmwlem  44910  amgmlemALT  44911
  Copyright terms: Public domain W3C validator