![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmmhm | Structured version Visualization version GIF version |
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
ghmmhm | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 18131 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
2 | grpmnd 17898 | . . 3 ⊢ (𝑆 ∈ Grp → 𝑆 ∈ Mnd) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Mnd) |
4 | ghmgrp2 18132 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
5 | grpmnd 17898 | . . 3 ⊢ (𝑇 ∈ Grp → 𝑇 ∈ Mnd) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Mnd) |
7 | eqid 2778 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
8 | eqid 2778 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
9 | 7, 8 | ghmf 18133 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
10 | eqid 2778 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
11 | eqid 2778 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
12 | 7, 10, 11 | ghmlin 18134 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
13 | 12 | 3expb 1100 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
14 | 13 | ralrimivva 3141 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
15 | eqid 2778 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
16 | eqid 2778 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
17 | 15, 16 | ghmid 18135 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
18 | 9, 14, 17 | 3jca 1108 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
19 | 7, 8, 10, 11, 15, 16 | ismhm 17805 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
20 | 3, 6, 18, 19 | syl21anbrc 1324 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ∀wral 3088 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 +gcplusg 16421 0gc0g 16569 Mndcmnd 17762 MndHom cmhm 17801 Grpcgrp 17891 GrpHom cghm 18126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-map 8208 df-0g 16571 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-mhm 17803 df-grp 17894 df-ghm 18127 |
This theorem is referenced by: ghmmhmb 18140 ghmmulg 18141 resghm2 18146 ghmco 18149 ghmeql 18152 symgtrinv 18361 frgpup3lem 18663 gsummulglem 18814 gsumzinv 18818 gsuminv 18819 gsummulc1 19079 gsummulc2 19080 pwsco2rhm 19214 gsumvsmul 19420 evlslem2 20005 evls1gsumadd 20190 zrhpsgnmhm 20430 mat2pmatmul 21043 pm2mp 21137 cayhamlem4 21200 tsmsinv 22459 plypf1 24505 amgmlem 25269 lgseisenlem4 25656 gsumvsmul1 30534 mendring 39194 amgmwlem 44276 amgmlemALT 44277 |
Copyright terms: Public domain | W3C validator |