![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmmhm | Structured version Visualization version GIF version |
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
ghmmhm | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 19258 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
2 | 1 | grpmndd 18986 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Mnd) |
3 | ghmgrp2 19259 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
4 | 3 | grpmndd 18986 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Mnd) |
5 | eqid 2740 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
6 | eqid 2740 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
7 | 5, 6 | ghmf 19260 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
8 | eqid 2740 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
9 | eqid 2740 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
10 | 5, 8, 9 | ghmlin 19261 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
11 | 10 | 3expb 1120 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
12 | 11 | ralrimivva 3208 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
13 | eqid 2740 | . . . 4 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
14 | eqid 2740 | . . . 4 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
15 | 13, 14 | ghmid 19262 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g‘𝑆)) = (0g‘𝑇)) |
16 | 7, 12, 15 | 3jca 1128 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
17 | 5, 6, 8, 9, 13, 14 | ismhm 18820 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
18 | 2, 4, 16, 17 | syl21anbrc 1344 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Mndcmnd 18772 MndHom cmhm 18816 GrpHom cghm 19252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-ghm 19253 |
This theorem is referenced by: ghmmhmb 19267 ghmmulg 19268 resghm2 19273 ghmco 19276 ghmeql 19279 symgtrinv 19514 frgpup3lem 19819 gsummulglem 19983 gsumzinv 19987 gsuminv 19988 gsummulc1OLD 20337 gsummulc2OLD 20338 gsummulc1 20339 gsummulc2 20340 pwsco2rhm 20529 gsumvsmul 20946 rhmpreimaidl 21310 zrhpsgnmhm 21625 evlslem2 22126 evlsgsumadd 22138 evls1gsumadd 22349 rhmcomulmpl 22407 rhmmpl 22408 rhmply1vsca 22413 mat2pmatmul 22758 pm2mp 22852 cayhamlem4 22915 tsmsinv 24177 plypf1 26271 amgmlem 27051 lgseisenlem4 27440 gsumvsmul1 33034 algextdeglem8 33715 rhmcomulpsr 42506 rhmpsr 42507 selvcllem4 42536 selvvvval 42540 evlselv 42542 selvadd 42543 selvmul 42544 mendring 43149 amgmwlem 48896 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |