Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2mpmhm Structured version   Visualization version   GIF version

Theorem pm2mpmhm 20995
 Description: The transformation of polynomial matrices into polynomials over matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 22-Oct-2019.) (Revised by AV, 6-Dec-2019.)
Hypotheses
Ref Expression
pm2mpmhm.p 𝑃 = (Poly1𝑅)
pm2mpmhm.c 𝐶 = (𝑁 Mat 𝑃)
pm2mpmhm.a 𝐴 = (𝑁 Mat 𝑅)
pm2mpmhm.q 𝑄 = (Poly1𝐴)
pm2mpmhm.t 𝑇 = (𝑁 pMatToMatPoly 𝑅)
Assertion
Ref Expression
pm2mpmhm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ ((mulGrp‘𝐶) MndHom (mulGrp‘𝑄)))

Proof of Theorem pm2mpmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2mpmhm.p . . . . 5 𝑃 = (Poly1𝑅)
2 pm2mpmhm.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
31, 2pmatring 20868 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
4 eqid 2825 . . . . 5 (mulGrp‘𝐶) = (mulGrp‘𝐶)
54ringmgp 18907 . . . 4 (𝐶 ∈ Ring → (mulGrp‘𝐶) ∈ Mnd)
63, 5syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝐶) ∈ Mnd)
7 pm2mpmhm.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
87matring 20616 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
9 pm2mpmhm.q . . . . 5 𝑄 = (Poly1𝐴)
109ply1ring 19978 . . . 4 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
11 eqid 2825 . . . . 5 (mulGrp‘𝑄) = (mulGrp‘𝑄)
1211ringmgp 18907 . . . 4 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
138, 10, 123syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
146, 13jca 507 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((mulGrp‘𝐶) ∈ Mnd ∧ (mulGrp‘𝑄) ∈ Mnd))
15 eqid 2825 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
164, 15mgpbas 18849 . . . . 5 (Base‘𝐶) = (Base‘(mulGrp‘𝐶))
1716eqcomi 2834 . . . 4 (Base‘(mulGrp‘𝐶)) = (Base‘𝐶)
18 eqid 2825 . . . 4 ( ·𝑠𝑄) = ( ·𝑠𝑄)
19 eqid 2825 . . . 4 (.g‘(mulGrp‘𝑄)) = (.g‘(mulGrp‘𝑄))
20 eqid 2825 . . . 4 (var1𝐴) = (var1𝐴)
21 pm2mpmhm.t . . . 4 𝑇 = (𝑁 pMatToMatPoly 𝑅)
22 eqid 2825 . . . . . 6 (Base‘𝑄) = (Base‘𝑄)
2311, 22mgpbas 18849 . . . . 5 (Base‘𝑄) = (Base‘(mulGrp‘𝑄))
2423eqcomi 2834 . . . 4 (Base‘(mulGrp‘𝑄)) = (Base‘𝑄)
251, 2, 17, 18, 19, 20, 7, 9, 21, 24pm2mpf 20973 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:(Base‘(mulGrp‘𝐶))⟶(Base‘(mulGrp‘𝑄)))
261, 2, 7, 9, 21, 17pm2mpmhmlem2 20994 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘(mulGrp‘𝐶))∀𝑦 ∈ (Base‘(mulGrp‘𝐶))(𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)))
271, 2, 15, 18, 19, 20, 7, 9, 21idpm2idmp 20976 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐶)) = (1r𝑄))
2825, 26, 273jca 1162 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇:(Base‘(mulGrp‘𝐶))⟶(Base‘(mulGrp‘𝑄)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝐶))∀𝑦 ∈ (Base‘(mulGrp‘𝐶))(𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)) ∧ (𝑇‘(1r𝐶)) = (1r𝑄)))
29 eqid 2825 . . 3 (Base‘(mulGrp‘𝐶)) = (Base‘(mulGrp‘𝐶))
30 eqid 2825 . . 3 (Base‘(mulGrp‘𝑄)) = (Base‘(mulGrp‘𝑄))
31 eqid 2825 . . . 4 (.r𝐶) = (.r𝐶)
324, 31mgpplusg 18847 . . 3 (.r𝐶) = (+g‘(mulGrp‘𝐶))
33 eqid 2825 . . . 4 (.r𝑄) = (.r𝑄)
3411, 33mgpplusg 18847 . . 3 (.r𝑄) = (+g‘(mulGrp‘𝑄))
35 eqid 2825 . . . 4 (1r𝐶) = (1r𝐶)
364, 35ringidval 18857 . . 3 (1r𝐶) = (0g‘(mulGrp‘𝐶))
37 eqid 2825 . . . 4 (1r𝑄) = (1r𝑄)
3811, 37ringidval 18857 . . 3 (1r𝑄) = (0g‘(mulGrp‘𝑄))
3929, 30, 32, 34, 36, 38ismhm 17690 . 2 (𝑇 ∈ ((mulGrp‘𝐶) MndHom (mulGrp‘𝑄)) ↔ (((mulGrp‘𝐶) ∈ Mnd ∧ (mulGrp‘𝑄) ∈ Mnd) ∧ (𝑇:(Base‘(mulGrp‘𝐶))⟶(Base‘(mulGrp‘𝑄)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝐶))∀𝑦 ∈ (Base‘(mulGrp‘𝐶))(𝑇‘(𝑥(.r𝐶)𝑦)) = ((𝑇𝑥)(.r𝑄)(𝑇𝑦)) ∧ (𝑇‘(1r𝐶)) = (1r𝑄))))
4014, 28, 39sylanbrc 578 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ ((mulGrp‘𝐶) MndHom (mulGrp‘𝑄)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164  ∀wral 3117  ⟶wf 6119  ‘cfv 6123  (class class class)co 6905  Fincfn 8222  Basecbs 16222  .rcmulr 16306   ·𝑠 cvsca 16309  Mndcmnd 17647   MndHom cmhm 17686  .gcmg 17894  mulGrpcmgp 18843  1rcur 18855  Ringcrg 18901  var1cv1 19906  Poly1cpl1 19907   Mat cmat 20580   pMatToMatPoly cpm2mp 20967 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-ot 4406  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-ofr 7158  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-hom 16329  df-cco 16330  df-0g 16455  df-gsum 16456  df-prds 16461  df-pws 16463  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mulg 17895  df-subg 17942  df-ghm 18009  df-cntz 18100  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-srg 18860  df-ring 18903  df-subrg 19134  df-lmod 19221  df-lss 19289  df-sra 19533  df-rgmod 19534  df-ascl 19675  df-psr 19717  df-mvr 19718  df-mpl 19719  df-opsr 19721  df-psr1 19910  df-vr1 19911  df-ply1 19912  df-coe1 19913  df-dsmm 20439  df-frlm 20454  df-mamu 20557  df-mat 20581  df-decpmat 20938  df-pm2mp 20968 This theorem is referenced by:  pm2mprhm  20996
 Copyright terms: Public domain W3C validator