MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco1rhm Structured version   Visualization version   GIF version

Theorem pwsco1rhm 20269
Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco1rhm.y 𝑌 = (𝑅s 𝐴)
pwsco1rhm.z 𝑍 = (𝑅s 𝐵)
pwsco1rhm.c 𝐶 = (Base‘𝑍)
pwsco1rhm.r (𝜑𝑅 ∈ Ring)
pwsco1rhm.a (𝜑𝐴𝑉)
pwsco1rhm.b (𝜑𝐵𝑊)
pwsco1rhm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
pwsco1rhm (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔   𝜑,𝑔   𝑅,𝑔   𝑔,𝑌   𝐶,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hints:   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem pwsco1rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco1rhm.r . . 3 (𝜑𝑅 ∈ Ring)
2 pwsco1rhm.b . . 3 (𝜑𝐵𝑊)
3 pwsco1rhm.z . . . 4 𝑍 = (𝑅s 𝐵)
43pwsring 20130 . . 3 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → 𝑍 ∈ Ring)
51, 2, 4syl2anc 584 . 2 (𝜑𝑍 ∈ Ring)
6 pwsco1rhm.a . . 3 (𝜑𝐴𝑉)
7 pwsco1rhm.y . . . 4 𝑌 = (𝑅s 𝐴)
87pwsring 20130 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
91, 6, 8syl2anc 584 . 2 (𝜑𝑌 ∈ Ring)
10 pwsco1rhm.c . . . . 5 𝐶 = (Base‘𝑍)
11 ringmnd 20059 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
121, 11syl 17 . . . . 5 (𝜑𝑅 ∈ Mnd)
13 pwsco1rhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
147, 3, 10, 12, 6, 2, 13pwsco1mhm 18709 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
15 ringgrp 20054 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
165, 15syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
17 ringgrp 20054 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
189, 17syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
19 ghmmhmb 19097 . . . . 5 ((𝑍 ∈ Grp ∧ 𝑌 ∈ Grp) → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2016, 18, 19syl2anc 584 . . . 4 (𝜑 → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2114, 20eleqtrrd 2836 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌))
22 eqid 2732 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
23 eqid 2732 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
24 eqid 2732 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
25 eqid 2732 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2625ringmgp 20055 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
271, 26syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
2822, 23, 24, 27, 6, 2, 13pwsco1mhm 18709 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)) ∈ (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
29 eqid 2732 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
303, 29pwsbas 17429 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍))
3112, 2, 30syl2anc 584 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍))
3231, 10eqtr4di 2790 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = 𝐶)
3325, 29mgpbas 19987 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3423, 33pwsbas 17429 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑m 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3527, 2, 34syl2anc 584 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3632, 35eqtr3d 2774 . . . . 5 (𝜑𝐶 = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3736mpteq1d 5242 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)))
38 eqidd 2733 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
39 eqidd 2733 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
40 eqid 2732 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
41 eqid 2732 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
42 eqid 2732 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
43 eqid 2732 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
443, 25, 23, 40, 41, 24, 42, 43pwsmgp 20133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
451, 2, 44syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
4645simpld 495 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
47 eqid 2732 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
48 eqid 2732 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
49 eqid 2732 . . . . . . . 8 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
50 eqid 2732 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
51 eqid 2732 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
527, 25, 22, 47, 48, 49, 50, 51pwsmgp 20133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
531, 6, 52syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5453simpld 495 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
5545simprd 496 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
5655oveqdr 7433 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
5753simprd 496 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
5857oveqdr 7433 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
5938, 39, 46, 54, 56, 58mhmpropd 18674 . . . 4 (𝜑 → ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)) = (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
6028, 37, 593eltr4d 2848 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))
6121, 60jca 512 . 2 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))))
6240, 47isrhm 20249 . 2 ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌) ↔ ((𝑍 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))))
635, 9, 61, 62syl21anbrc 1344 1 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cmpt 5230  ccom 5679  wf 6536  cfv 6540  (class class class)co 7405  m cmap 8816  Basecbs 17140  +gcplusg 17193  s cpws 17388  Mndcmnd 18621   MndHom cmhm 18665  Grpcgrp 18815   GrpHom cghm 19083  mulGrpcmgp 19981  Ringcrg 20049   RingHom crh 20240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-prds 17389  df-pws 17391  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-ghm 19084  df-mgp 19982  df-ur 19999  df-ring 20051  df-rnghom 20243
This theorem is referenced by:  evls1rhmlem  21831
  Copyright terms: Public domain W3C validator