MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco1rhm Structured version   Visualization version   GIF version

Theorem pwsco1rhm 20528
Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco1rhm.y 𝑌 = (𝑅s 𝐴)
pwsco1rhm.z 𝑍 = (𝑅s 𝐵)
pwsco1rhm.c 𝐶 = (Base‘𝑍)
pwsco1rhm.r (𝜑𝑅 ∈ Ring)
pwsco1rhm.a (𝜑𝐴𝑉)
pwsco1rhm.b (𝜑𝐵𝑊)
pwsco1rhm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
pwsco1rhm (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔   𝜑,𝑔   𝑅,𝑔   𝑔,𝑌   𝐶,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hints:   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem pwsco1rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco1rhm.r . . 3 (𝜑𝑅 ∈ Ring)
2 pwsco1rhm.b . . 3 (𝜑𝐵𝑊)
3 pwsco1rhm.z . . . 4 𝑍 = (𝑅s 𝐵)
43pwsring 20347 . . 3 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → 𝑍 ∈ Ring)
51, 2, 4syl2anc 583 . 2 (𝜑𝑍 ∈ Ring)
6 pwsco1rhm.a . . 3 (𝜑𝐴𝑉)
7 pwsco1rhm.y . . . 4 𝑌 = (𝑅s 𝐴)
87pwsring 20347 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
91, 6, 8syl2anc 583 . 2 (𝜑𝑌 ∈ Ring)
10 pwsco1rhm.c . . . . 5 𝐶 = (Base‘𝑍)
11 ringmnd 20270 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
121, 11syl 17 . . . . 5 (𝜑𝑅 ∈ Mnd)
13 pwsco1rhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
147, 3, 10, 12, 6, 2, 13pwsco1mhm 18867 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
15 ringgrp 20265 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
165, 15syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
17 ringgrp 20265 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
189, 17syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
19 ghmmhmb 19267 . . . . 5 ((𝑍 ∈ Grp ∧ 𝑌 ∈ Grp) → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2016, 18, 19syl2anc 583 . . . 4 (𝜑 → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2114, 20eleqtrrd 2847 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌))
22 eqid 2740 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
23 eqid 2740 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
24 eqid 2740 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
25 eqid 2740 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2625ringmgp 20266 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
271, 26syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
2822, 23, 24, 27, 6, 2, 13pwsco1mhm 18867 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)) ∈ (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
29 eqid 2740 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
303, 29pwsbas 17547 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍))
3112, 2, 30syl2anc 583 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍))
3231, 10eqtr4di 2798 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = 𝐶)
3325, 29mgpbas 20167 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3423, 33pwsbas 17547 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑m 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3527, 2, 34syl2anc 583 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3632, 35eqtr3d 2782 . . . . 5 (𝜑𝐶 = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3736mpteq1d 5261 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)))
38 eqidd 2741 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
39 eqidd 2741 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
40 eqid 2740 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
41 eqid 2740 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
42 eqid 2740 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
43 eqid 2740 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
443, 25, 23, 40, 41, 24, 42, 43pwsmgp 20350 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
451, 2, 44syl2anc 583 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
4645simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
47 eqid 2740 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
48 eqid 2740 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
49 eqid 2740 . . . . . . . 8 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
50 eqid 2740 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
51 eqid 2740 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
527, 25, 22, 47, 48, 49, 50, 51pwsmgp 20350 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
531, 6, 52syl2anc 583 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5453simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
5545simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
5655oveqdr 7476 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
5753simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
5857oveqdr 7476 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
5938, 39, 46, 54, 56, 58mhmpropd 18827 . . . 4 (𝜑 → ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)) = (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
6028, 37, 593eltr4d 2859 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))
6121, 60jca 511 . 2 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))))
6240, 47isrhm 20504 . 2 ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌) ↔ ((𝑍 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))))
635, 9, 61, 62syl21anbrc 1344 1 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Basecbs 17258  +gcplusg 17311  s cpws 17506  Mndcmnd 18772   MndHom cmhm 18816  Grpcgrp 18973   GrpHom cghm 19252  mulGrpcmgp 20161  Ringcrg 20260   RingHom crh 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-rhm 20498
This theorem is referenced by:  evls1rhmlem  22346
  Copyright terms: Public domain W3C validator