Step | Hyp | Ref
| Expression |
1 | | pwsco1rhm.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
2 | | pwsco1rhm.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
3 | | pwsco1rhm.z |
. . . 4
⊢ 𝑍 = (𝑅 ↑s 𝐵) |
4 | 3 | pwsring 19854 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊) → 𝑍 ∈ Ring) |
5 | 1, 2, 4 | syl2anc 584 |
. 2
⊢ (𝜑 → 𝑍 ∈ Ring) |
6 | | pwsco1rhm.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | | pwsco1rhm.y |
. . . 4
⊢ 𝑌 = (𝑅 ↑s 𝐴) |
8 | 7 | pwsring 19854 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉) → 𝑌 ∈ Ring) |
9 | 1, 6, 8 | syl2anc 584 |
. 2
⊢ (𝜑 → 𝑌 ∈ Ring) |
10 | | pwsco1rhm.c |
. . . . 5
⊢ 𝐶 = (Base‘𝑍) |
11 | | ringmnd 19793 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
12 | 1, 11 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
13 | | pwsco1rhm.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
14 | 7, 3, 10, 12, 6, 2, 13 | pwsco1mhm 18470 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 MndHom 𝑌)) |
15 | | ringgrp 19788 |
. . . . . 6
⊢ (𝑍 ∈ Ring → 𝑍 ∈ Grp) |
16 | 5, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ Grp) |
17 | | ringgrp 19788 |
. . . . . 6
⊢ (𝑌 ∈ Ring → 𝑌 ∈ Grp) |
18 | 9, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ Grp) |
19 | | ghmmhmb 18845 |
. . . . 5
⊢ ((𝑍 ∈ Grp ∧ 𝑌 ∈ Grp) → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌)) |
20 | 16, 18, 19 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌)) |
21 | 14, 20 | eleqtrrd 2842 |
. . 3
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 GrpHom 𝑌)) |
22 | | eqid 2738 |
. . . . 5
⊢
((mulGrp‘𝑅)
↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴) |
23 | | eqid 2738 |
. . . . 5
⊢
((mulGrp‘𝑅)
↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵) |
24 | | eqid 2738 |
. . . . 5
⊢
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) |
25 | | eqid 2738 |
. . . . . . 7
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
26 | 25 | ringmgp 19789 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
27 | 1, 26 | syl 17 |
. . . . 5
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
28 | 22, 23, 24, 27, 6, 2, 13 | pwsco1mhm 18470 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ↦ (𝑔 ∘ 𝐹)) ∈ (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s
𝐴))) |
29 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
30 | 3, 29 | pwsbas 17198 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊) → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍)) |
31 | 12, 2, 30 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍)) |
32 | 31, 10 | eqtr4di 2796 |
. . . . . 6
⊢ (𝜑 → ((Base‘𝑅) ↑m 𝐵) = 𝐶) |
33 | 25, 29 | mgpbas 19726 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅)) |
34 | 23, 33 | pwsbas 17198 |
. . . . . . 7
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝐵 ∈
𝑊) →
((Base‘𝑅)
↑m 𝐵) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵))) |
35 | 27, 2, 34 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((Base‘𝑅) ↑m 𝐵) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵))) |
36 | 32, 35 | eqtr3d 2780 |
. . . . 5
⊢ (𝜑 → 𝐶 = (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
37 | 36 | mpteq1d 5169 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ↦ (𝑔 ∘ 𝐹))) |
38 | | eqidd 2739 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))) |
39 | | eqidd 2739 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) |
40 | | eqid 2738 |
. . . . . . . 8
⊢
(mulGrp‘𝑍) =
(mulGrp‘𝑍) |
41 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)) |
42 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘𝑍)) =
(+g‘(mulGrp‘𝑍)) |
43 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘((mulGrp‘𝑅) ↑s 𝐵)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)) |
44 | 3, 25, 23, 40, 41, 24, 42, 43 | pwsmgp 19857 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊) → ((Base‘(mulGrp‘𝑍)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧
(+g‘(mulGrp‘𝑍)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)))) |
45 | 1, 2, 44 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ∧
(+g‘(mulGrp‘𝑍)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)))) |
46 | 45 | simpld 495 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
47 | | eqid 2738 |
. . . . . . . 8
⊢
(mulGrp‘𝑌) =
(mulGrp‘𝑌) |
48 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)) |
49 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘((mulGrp‘𝑅) ↑s 𝐴)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐴)) |
50 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘𝑌)) =
(+g‘(mulGrp‘𝑌)) |
51 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘((mulGrp‘𝑅) ↑s 𝐴)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴)) |
52 | 7, 25, 22, 47, 48, 49, 50, 51 | pwsmgp 19857 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉) → ((Base‘(mulGrp‘𝑌)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧
(+g‘(mulGrp‘𝑌)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴)))) |
53 | 1, 6, 52 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s
𝐴)) ∧
(+g‘(mulGrp‘𝑌)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴)))) |
54 | 53 | simpld 495 |
. . . . 5
⊢ (𝜑 →
(Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s
𝐴))) |
55 | 45 | simprd 496 |
. . . . . 6
⊢ (𝜑 →
(+g‘(mulGrp‘𝑍)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵))) |
56 | 55 | oveqdr 7303 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s
𝐵))𝑦)) |
57 | 53 | simprd 496 |
. . . . . 6
⊢ (𝜑 →
(+g‘(mulGrp‘𝑌)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐴))) |
58 | 57 | oveqdr 7303 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s
𝐴))𝑦)) |
59 | 38, 39, 46, 54, 56, 58 | mhmpropd 18436 |
. . . 4
⊢ (𝜑 → ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)) = (((mulGrp‘𝑅) ↑s
𝐵) MndHom
((mulGrp‘𝑅)
↑s 𝐴))) |
60 | 28, 37, 59 | 3eltr4d 2854 |
. . 3
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))) |
61 | 21, 60 | jca 512 |
. 2
⊢ (𝜑 → ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))) |
62 | 40, 47 | isrhm 19965 |
. 2
⊢ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 RingHom 𝑌) ↔ ((𝑍 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ ((𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))))) |
63 | 5, 9, 61, 62 | syl21anbrc 1343 |
1
⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 RingHom 𝑌)) |