MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsco1rhm Structured version   Visualization version   GIF version

Theorem pwsco1rhm 20503
Description: Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
pwsco1rhm.y 𝑌 = (𝑅s 𝐴)
pwsco1rhm.z 𝑍 = (𝑅s 𝐵)
pwsco1rhm.c 𝐶 = (Base‘𝑍)
pwsco1rhm.r (𝜑𝑅 ∈ Ring)
pwsco1rhm.a (𝜑𝐴𝑉)
pwsco1rhm.b (𝜑𝐵𝑊)
pwsco1rhm.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
pwsco1rhm (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔   𝜑,𝑔   𝑅,𝑔   𝑔,𝑌   𝐶,𝑔   𝑔,𝐹   𝑔,𝑍
Allowed substitution hints:   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem pwsco1rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsco1rhm.r . . 3 (𝜑𝑅 ∈ Ring)
2 pwsco1rhm.b . . 3 (𝜑𝐵𝑊)
3 pwsco1rhm.z . . . 4 𝑍 = (𝑅s 𝐵)
43pwsring 20322 . . 3 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → 𝑍 ∈ Ring)
51, 2, 4syl2anc 584 . 2 (𝜑𝑍 ∈ Ring)
6 pwsco1rhm.a . . 3 (𝜑𝐴𝑉)
7 pwsco1rhm.y . . . 4 𝑌 = (𝑅s 𝐴)
87pwsring 20322 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → 𝑌 ∈ Ring)
91, 6, 8syl2anc 584 . 2 (𝜑𝑌 ∈ Ring)
10 pwsco1rhm.c . . . . 5 𝐶 = (Base‘𝑍)
11 ringmnd 20241 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
121, 11syl 17 . . . . 5 (𝜑𝑅 ∈ Mnd)
13 pwsco1rhm.f . . . . 5 (𝜑𝐹:𝐴𝐵)
147, 3, 10, 12, 6, 2, 13pwsco1mhm 18846 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 MndHom 𝑌))
15 ringgrp 20236 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Grp)
165, 15syl 17 . . . . 5 (𝜑𝑍 ∈ Grp)
17 ringgrp 20236 . . . . . 6 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
189, 17syl 17 . . . . 5 (𝜑𝑌 ∈ Grp)
19 ghmmhmb 19246 . . . . 5 ((𝑍 ∈ Grp ∧ 𝑌 ∈ Grp) → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2016, 18, 19syl2anc 584 . . . 4 (𝜑 → (𝑍 GrpHom 𝑌) = (𝑍 MndHom 𝑌))
2114, 20eleqtrrd 2843 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌))
22 eqid 2736 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐴) = ((mulGrp‘𝑅) ↑s 𝐴)
23 eqid 2736 . . . . 5 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
24 eqid 2736 . . . . 5 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
25 eqid 2736 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2625ringmgp 20237 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
271, 26syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
2822, 23, 24, 27, 6, 2, 13pwsco1mhm 18846 . . . 4 (𝜑 → (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)) ∈ (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
29 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
303, 29pwsbas 17533 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍))
3112, 2, 30syl2anc 584 . . . . . . 7 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = (Base‘𝑍))
3231, 10eqtr4di 2794 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = 𝐶)
3325, 29mgpbas 20143 . . . . . . . 8 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
3423, 33pwsbas 17533 . . . . . . 7 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵𝑊) → ((Base‘𝑅) ↑m 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3527, 2, 34syl2anc 584 . . . . . 6 (𝜑 → ((Base‘𝑅) ↑m 𝐵) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3632, 35eqtr3d 2778 . . . . 5 (𝜑𝐶 = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
3736mpteq1d 5236 . . . 4 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) = (𝑔 ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ↦ (𝑔𝐹)))
38 eqidd 2737 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍)))
39 eqidd 2737 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
40 eqid 2736 . . . . . . . 8 (mulGrp‘𝑍) = (mulGrp‘𝑍)
41 eqid 2736 . . . . . . . 8 (Base‘(mulGrp‘𝑍)) = (Base‘(mulGrp‘𝑍))
42 eqid 2736 . . . . . . . 8 (+g‘(mulGrp‘𝑍)) = (+g‘(mulGrp‘𝑍))
43 eqid 2736 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
443, 25, 23, 40, 41, 24, 42, 43pwsmgp 20325 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐵𝑊) → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
451, 2, 44syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
4645simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑍)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
47 eqid 2736 . . . . . . . 8 (mulGrp‘𝑌) = (mulGrp‘𝑌)
48 eqid 2736 . . . . . . . 8 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
49 eqid 2736 . . . . . . . 8 (Base‘((mulGrp‘𝑅) ↑s 𝐴)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴))
50 eqid 2736 . . . . . . . 8 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
51 eqid 2736 . . . . . . . 8 (+g‘((mulGrp‘𝑅) ↑s 𝐴)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))
527, 25, 22, 47, 48, 49, 50, 51pwsmgp 20325 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑉) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
531, 6, 52syl2anc 584 . . . . . 6 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴))))
5453simpld 494 . . . . 5 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐴)))
5545simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑍)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
5655oveqdr 7460 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑍)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑍)))) → (𝑥(+g‘(mulGrp‘𝑍))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
5753simprd 495 . . . . . 6 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐴)))
5857oveqdr 7460 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐴))𝑦))
5938, 39, 46, 54, 56, 58mhmpropd 18806 . . . 4 (𝜑 → ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)) = (((mulGrp‘𝑅) ↑s 𝐵) MndHom ((mulGrp‘𝑅) ↑s 𝐴)))
6028, 37, 593eltr4d 2855 . . 3 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))
6121, 60jca 511 . 2 (𝜑 → ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌))))
6240, 47isrhm 20479 . 2 ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌) ↔ ((𝑍 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ ((𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 GrpHom 𝑌) ∧ (𝑔𝐶 ↦ (𝑔𝐹)) ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘𝑌)))))
635, 9, 61, 62syl21anbrc 1344 1 (𝜑 → (𝑔𝐶 ↦ (𝑔𝐹)) ∈ (𝑍 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cmpt 5224  ccom 5688  wf 6556  cfv 6560  (class class class)co 7432  m cmap 8867  Basecbs 17248  +gcplusg 17298  s cpws 17492  Mndcmnd 18748   MndHom cmhm 18795  Grpcgrp 18952   GrpHom cghm 19231  mulGrpcmgp 20138  Ringcrg 20231   RingHom crh 20470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-prds 17493  df-pws 17495  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-minusg 18956  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-rhm 20473
This theorem is referenced by:  evls1rhmlem  22326
  Copyright terms: Public domain W3C validator