MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagrhm Structured version   Visualization version   GIF version

Theorem pwsdiagrhm 20550
Description: Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
pwsdiagrhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagrhm.b 𝐵 = (Base‘𝑅)
pwsdiagrhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagrhm ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagrhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 481 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
2 pwsdiagrhm.y . . 3 𝑌 = (𝑅s 𝐼)
32pwsring 20264 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ Ring)
4 ringgrp 20182 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5 pwsdiagrhm.b . . . . 5 𝐵 = (Base‘𝑅)
6 pwsdiagrhm.f . . . . 5 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
72, 5, 6pwsdiagghm 19202 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
84, 7sylan 578 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
9 eqid 2725 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109ringmgp 20183 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
11 eqid 2725 . . . . . 6 ((mulGrp‘𝑅) ↑s 𝐼) = ((mulGrp‘𝑅) ↑s 𝐼)
129, 5mgpbas 20084 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
1311, 12, 6pwsdiagmhm 18787 . . . . 5 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
1410, 13sylan 578 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
15 eqidd 2726 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)))
16 eqidd 2726 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
17 eqid 2725 . . . . . . 7 (mulGrp‘𝑌) = (mulGrp‘𝑌)
18 eqid 2725 . . . . . . 7 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
19 eqid 2725 . . . . . . 7 (Base‘((mulGrp‘𝑅) ↑s 𝐼)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼))
20 eqid 2725 . . . . . . 7 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
21 eqid 2725 . . . . . . 7 (+g‘((mulGrp‘𝑅) ↑s 𝐼)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))
222, 9, 11, 17, 18, 19, 20, 21pwsmgp 20267 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))))
2322simpld 493 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)))
24 eqidd 2726 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑅)))) → (𝑦(+g‘(mulGrp‘𝑅))𝑧) = (𝑦(+g‘(mulGrp‘𝑅))𝑧))
2522simprd 494 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼)))
2625oveqdr 7444 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑦(+g‘(mulGrp‘𝑌))𝑧) = (𝑦(+g‘((mulGrp‘𝑅) ↑s 𝐼))𝑧))
2715, 16, 15, 23, 24, 26mhmpropd 18748 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)) = ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
2814, 27eleqtrrd 2828 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))
298, 28jca 510 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌))))
309, 17isrhm 20421 . 2 (𝐹 ∈ (𝑅 RingHom 𝑌) ↔ ((𝑅 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))))
311, 3, 29, 30syl21anbrc 1341 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {csn 4624  cmpt 5226   × cxp 5670  cfv 6543  (class class class)co 7416  Basecbs 17179  +gcplusg 17232  s cpws 17427  Mndcmnd 18693   MndHom cmhm 18737  Grpcgrp 18894   GrpHom cghm 19171  mulGrpcmgp 20078  Ringcrg 20177   RingHom crh 20412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-hom 17256  df-cco 17257  df-0g 17422  df-prds 17428  df-pws 17430  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-grp 18897  df-minusg 18898  df-ghm 19172  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-ring 20179  df-rhm 20415
This theorem is referenced by:  evlsval2  22040  evlsval3  41857
  Copyright terms: Public domain W3C validator