MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagrhm Structured version   Visualization version   GIF version

Theorem pwsdiagrhm 19205
Description: Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
pwsdiagrhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagrhm.b 𝐵 = (Base‘𝑅)
pwsdiagrhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagrhm ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagrhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 476 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
2 pwsdiagrhm.y . . . 4 𝑌 = (𝑅s 𝐼)
32pwsring 19002 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ Ring)
41, 3jca 507 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑅 ∈ Ring ∧ 𝑌 ∈ Ring))
5 ringgrp 18939 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6 pwsdiagrhm.b . . . . 5 𝐵 = (Base‘𝑅)
7 pwsdiagrhm.f . . . . 5 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
82, 6, 7pwsdiagghm 18072 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
95, 8sylan 575 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
10 eqid 2777 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1110ringmgp 18940 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
12 eqid 2777 . . . . . 6 ((mulGrp‘𝑅) ↑s 𝐼) = ((mulGrp‘𝑅) ↑s 𝐼)
1310, 6mgpbas 18882 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
1412, 13, 7pwsdiagmhm 17755 . . . . 5 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
1511, 14sylan 575 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
16 eqidd 2778 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)))
17 eqidd 2778 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
18 eqid 2777 . . . . . . 7 (mulGrp‘𝑌) = (mulGrp‘𝑌)
19 eqid 2777 . . . . . . 7 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
20 eqid 2777 . . . . . . 7 (Base‘((mulGrp‘𝑅) ↑s 𝐼)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼))
21 eqid 2777 . . . . . . 7 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
22 eqid 2777 . . . . . . 7 (+g‘((mulGrp‘𝑅) ↑s 𝐼)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))
232, 10, 12, 18, 19, 20, 21, 22pwsmgp 19005 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))))
2423simpld 490 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)))
25 eqidd 2778 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑅)))) → (𝑦(+g‘(mulGrp‘𝑅))𝑧) = (𝑦(+g‘(mulGrp‘𝑅))𝑧))
2623simprd 491 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼)))
2726oveqdr 6950 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑦(+g‘(mulGrp‘𝑌))𝑧) = (𝑦(+g‘((mulGrp‘𝑅) ↑s 𝐼))𝑧))
2816, 17, 16, 24, 25, 27mhmpropd 17727 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)) = ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
2915, 28eleqtrrd 2861 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))
309, 29jca 507 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌))))
3110, 18isrhm 19110 . 2 (𝐹 ∈ (𝑅 RingHom 𝑌) ↔ ((𝑅 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))))
324, 30, 31sylanbrc 578 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  {csn 4397  cmpt 4965   × cxp 5353  cfv 6135  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  s cpws 16493  Mndcmnd 17680   MndHom cmhm 17719  Grpcgrp 17809   GrpHom cghm 18041  mulGrpcmgp 18876  Ringcrg 18934   RingHom crh 19101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-hom 16362  df-cco 16363  df-0g 16488  df-prds 16494  df-pws 16496  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-grp 17812  df-minusg 17813  df-ghm 18042  df-mgp 18877  df-ur 18889  df-ring 18936  df-rnghom 19104
This theorem is referenced by:  evlsval2  19916
  Copyright terms: Public domain W3C validator