![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsdiagrhm | Structured version Visualization version GIF version |
Description: Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
pwsdiagrhm.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsdiagrhm.b | ⊢ 𝐵 = (Base‘𝑅) |
pwsdiagrhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
pwsdiagrhm | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ Ring) | |
2 | pwsdiagrhm.y | . . 3 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
3 | 2 | pwsring 20264 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ Ring) |
4 | ringgrp 20182 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
5 | pwsdiagrhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | pwsdiagrhm.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
7 | 2, 5, 6 | pwsdiagghm 19202 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
8 | 4, 7 | sylan 578 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
9 | eqid 2725 | . . . . . 6 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
10 | 9 | ringmgp 20183 | . . . . 5 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
11 | eqid 2725 | . . . . . 6 ⊢ ((mulGrp‘𝑅) ↑s 𝐼) = ((mulGrp‘𝑅) ↑s 𝐼) | |
12 | 9, 5 | mgpbas 20084 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
13 | 11, 12, 6 | pwsdiagmhm 18787 | . . . . 5 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼))) |
14 | 10, 13 | sylan 578 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼))) |
15 | eqidd 2726 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))) | |
16 | eqidd 2726 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))) | |
17 | eqid 2725 | . . . . . . 7 ⊢ (mulGrp‘𝑌) = (mulGrp‘𝑌) | |
18 | eqid 2725 | . . . . . . 7 ⊢ (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)) | |
19 | eqid 2725 | . . . . . . 7 ⊢ (Base‘((mulGrp‘𝑅) ↑s 𝐼)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)) | |
20 | eqid 2725 | . . . . . . 7 ⊢ (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌)) | |
21 | eqid 2725 | . . . . . . 7 ⊢ (+g‘((mulGrp‘𝑅) ↑s 𝐼)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼)) | |
22 | 2, 9, 11, 17, 18, 19, 20, 21 | pwsmgp 20267 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼)))) |
23 | 22 | simpld 493 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼))) |
24 | eqidd 2726 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑅)))) → (𝑦(+g‘(mulGrp‘𝑅))𝑧) = (𝑦(+g‘(mulGrp‘𝑅))𝑧)) | |
25 | 22 | simprd 494 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))) |
26 | 25 | oveqdr 7444 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑦(+g‘(mulGrp‘𝑌))𝑧) = (𝑦(+g‘((mulGrp‘𝑅) ↑s 𝐼))𝑧)) |
27 | 15, 16, 15, 23, 24, 26 | mhmpropd 18748 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)) = ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼))) |
28 | 14, 27 | eleqtrrd 2828 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌))) |
29 | 8, 28 | jca 510 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))) |
30 | 9, 17 | isrhm 20421 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑌) ↔ ((𝑅 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌))))) |
31 | 1, 3, 29, 30 | syl21anbrc 1341 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {csn 4624 ↦ cmpt 5226 × cxp 5670 ‘cfv 6543 (class class class)co 7416 Basecbs 17179 +gcplusg 17232 ↑s cpws 17427 Mndcmnd 18693 MndHom cmhm 18737 Grpcgrp 18894 GrpHom cghm 19171 mulGrpcmgp 20078 Ringcrg 20177 RingHom crh 20412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-hom 17256 df-cco 17257 df-0g 17422 df-prds 17428 df-pws 17430 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18897 df-minusg 18898 df-ghm 19172 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-rhm 20415 |
This theorem is referenced by: evlsval2 22040 evlsval3 41857 |
Copyright terms: Public domain | W3C validator |