MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagrhm Structured version   Visualization version   GIF version

Theorem pwsdiagrhm 20522
Description: Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
pwsdiagrhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagrhm.b 𝐵 = (Base‘𝑅)
pwsdiagrhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagrhm ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagrhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
2 pwsdiagrhm.y . . 3 𝑌 = (𝑅s 𝐼)
32pwsring 20242 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ Ring)
4 ringgrp 20156 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5 pwsdiagrhm.b . . . . 5 𝐵 = (Base‘𝑅)
6 pwsdiagrhm.f . . . . 5 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
72, 5, 6pwsdiagghm 19156 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
84, 7sylan 580 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
9 eqid 2731 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109ringmgp 20157 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
11 eqid 2731 . . . . . 6 ((mulGrp‘𝑅) ↑s 𝐼) = ((mulGrp‘𝑅) ↑s 𝐼)
129, 5mgpbas 20063 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
1311, 12, 6pwsdiagmhm 18739 . . . . 5 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
1410, 13sylan 580 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
15 eqidd 2732 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)))
16 eqidd 2732 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
17 eqid 2731 . . . . . . 7 (mulGrp‘𝑌) = (mulGrp‘𝑌)
18 eqid 2731 . . . . . . 7 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
19 eqid 2731 . . . . . . 7 (Base‘((mulGrp‘𝑅) ↑s 𝐼)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼))
20 eqid 2731 . . . . . . 7 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
21 eqid 2731 . . . . . . 7 (+g‘((mulGrp‘𝑅) ↑s 𝐼)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))
222, 9, 11, 17, 18, 19, 20, 21pwsmgp 20245 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))))
2322simpld 494 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)))
24 eqidd 2732 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑅)))) → (𝑦(+g‘(mulGrp‘𝑅))𝑧) = (𝑦(+g‘(mulGrp‘𝑅))𝑧))
2522simprd 495 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼)))
2625oveqdr 7374 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑦(+g‘(mulGrp‘𝑌))𝑧) = (𝑦(+g‘((mulGrp‘𝑅) ↑s 𝐼))𝑧))
2715, 16, 15, 23, 24, 26mhmpropd 18700 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)) = ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
2814, 27eleqtrrd 2834 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))
298, 28jca 511 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌))))
309, 17isrhm 20396 . 2 (𝐹 ∈ (𝑅 RingHom 𝑌) ↔ ((𝑅 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))))
311, 3, 29, 30syl21anbrc 1345 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4573  cmpt 5170   × cxp 5612  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  s cpws 17350  Mndcmnd 18642   MndHom cmhm 18689  Grpcgrp 18846   GrpHom cghm 19124  mulGrpcmgp 20058  Ringcrg 20151   RingHom crh 20387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-rhm 20390
This theorem is referenced by:  evlsval2  22022  evlsval3  42651
  Copyright terms: Public domain W3C validator