MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiagrhm Structured version   Visualization version   GIF version

Theorem pwsdiagrhm 20523
Description: Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
pwsdiagrhm.y 𝑌 = (𝑅s 𝐼)
pwsdiagrhm.b 𝐵 = (Base‘𝑅)
pwsdiagrhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiagrhm ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiagrhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
2 pwsdiagrhm.y . . 3 𝑌 = (𝑅s 𝐼)
32pwsring 20240 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑌 ∈ Ring)
4 ringgrp 20154 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5 pwsdiagrhm.b . . . . 5 𝐵 = (Base‘𝑅)
6 pwsdiagrhm.f . . . . 5 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
72, 5, 6pwsdiagghm 19183 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
84, 7sylan 580 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
9 eqid 2730 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
109ringmgp 20155 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
11 eqid 2730 . . . . . 6 ((mulGrp‘𝑅) ↑s 𝐼) = ((mulGrp‘𝑅) ↑s 𝐼)
129, 5mgpbas 20061 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
1311, 12, 6pwsdiagmhm 18765 . . . . 5 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
1410, 13sylan 580 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
15 eqidd 2731 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)))
16 eqidd 2731 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
17 eqid 2730 . . . . . . 7 (mulGrp‘𝑌) = (mulGrp‘𝑌)
18 eqid 2730 . . . . . . 7 (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌))
19 eqid 2730 . . . . . . 7 (Base‘((mulGrp‘𝑅) ↑s 𝐼)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼))
20 eqid 2730 . . . . . . 7 (+g‘(mulGrp‘𝑌)) = (+g‘(mulGrp‘𝑌))
21 eqid 2730 . . . . . . 7 (+g‘((mulGrp‘𝑅) ↑s 𝐼)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))
222, 9, 11, 17, 18, 19, 20, 21pwsmgp 20243 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼))))
2322simpld 494 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(mulGrp‘𝑌)) = (Base‘((mulGrp‘𝑅) ↑s 𝐼)))
24 eqidd 2731 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑅)))) → (𝑦(+g‘(mulGrp‘𝑅))𝑧) = (𝑦(+g‘(mulGrp‘𝑅))𝑧))
2522simprd 495 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (+g‘(mulGrp‘𝑌)) = (+g‘((mulGrp‘𝑅) ↑s 𝐼)))
2625oveqdr 7418 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ (𝑦 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑧 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑦(+g‘(mulGrp‘𝑌))𝑧) = (𝑦(+g‘((mulGrp‘𝑅) ↑s 𝐼))𝑧))
2715, 16, 15, 23, 24, 26mhmpropd 18726 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)) = ((mulGrp‘𝑅) MndHom ((mulGrp‘𝑅) ↑s 𝐼)))
2814, 27eleqtrrd 2832 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))
298, 28jca 511 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌))))
309, 17isrhm 20394 . 2 (𝐹 ∈ (𝑅 RingHom 𝑌) ↔ ((𝑅 ∈ Ring ∧ 𝑌 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑌) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑌)))))
311, 3, 29, 30syl21anbrc 1345 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 RingHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4592  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  s cpws 17416  Mndcmnd 18668   MndHom cmhm 18715  Grpcgrp 18872   GrpHom cghm 19151  mulGrpcmgp 20056  Ringcrg 20149   RingHom crh 20385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-rhm 20388
This theorem is referenced by:  evlsval2  22001  evlsval3  42554
  Copyright terms: Public domain W3C validator