Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congmul Structured version   Visualization version   GIF version

Theorem congmul 42979
Description: If two pairs of numbers are componentwise congruent, so are their products. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
congmul (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸)))

Proof of Theorem congmul
StepHypRef Expression
1 simp11 1204 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∈ ℤ)
2 simp12 1205 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐵 ∈ ℤ)
3 simp2l 1200 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐷 ∈ ℤ)
42, 3zmulcld 12728 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐵 · 𝐷) ∈ ℤ)
5 simp2r 1201 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐸 ∈ ℤ)
62, 5zmulcld 12728 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐵 · 𝐸) ∈ ℤ)
7 simp13 1206 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐶 ∈ ℤ)
87, 5zmulcld 12728 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐶 · 𝐸) ∈ ℤ)
9 simp3r 1203 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ (𝐷𝐸))
10 zsubcl 12659 . . . . . 6 ((𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) → (𝐷𝐸) ∈ ℤ)
11103ad2ant2 1135 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐷𝐸) ∈ ℤ)
12 dvdsmultr2 16335 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐷𝐸) ∈ ℤ) → (𝐴 ∥ (𝐷𝐸) → 𝐴 ∥ (𝐵 · (𝐷𝐸))))
131, 2, 11, 12syl3anc 1373 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐴 ∥ (𝐷𝐸) → 𝐴 ∥ (𝐵 · (𝐷𝐸))))
149, 13mpd 15 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ (𝐵 · (𝐷𝐸)))
15 zcn 12618 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
16153ad2ant2 1135 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
17163ad2ant1 1134 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐵 ∈ ℂ)
18 zcn 12618 . . . . . 6 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
1918adantr 480 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) → 𝐷 ∈ ℂ)
20193ad2ant2 1135 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐷 ∈ ℂ)
21 zcn 12618 . . . . . 6 (𝐸 ∈ ℤ → 𝐸 ∈ ℂ)
2221adantl 481 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) → 𝐸 ∈ ℂ)
23223ad2ant2 1135 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐸 ∈ ℂ)
2417, 20, 23subdid 11719 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐵 · (𝐷𝐸)) = ((𝐵 · 𝐷) − (𝐵 · 𝐸)))
2514, 24breqtrd 5169 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐵 · 𝐸)))
26 simp3l 1202 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ (𝐵𝐶))
272, 7zsubcld 12727 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐵𝐶) ∈ ℤ)
28 dvdsmultr1 16333 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ 𝐸 ∈ ℤ) → (𝐴 ∥ (𝐵𝐶) → 𝐴 ∥ ((𝐵𝐶) · 𝐸)))
291, 27, 5, 28syl3anc 1373 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐴 ∥ (𝐵𝐶) → 𝐴 ∥ ((𝐵𝐶) · 𝐸)))
3026, 29mpd 15 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵𝐶) · 𝐸))
31 zcn 12618 . . . . . 6 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
32313ad2ant3 1136 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
33323ad2ant1 1134 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐶 ∈ ℂ)
3417, 33, 23subdird 11720 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → ((𝐵𝐶) · 𝐸) = ((𝐵 · 𝐸) − (𝐶 · 𝐸)))
3530, 34breqtrd 5169 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 · 𝐸) − (𝐶 · 𝐸)))
36 congtr 42977 . 2 (((𝐴 ∈ ℤ ∧ (𝐵 · 𝐷) ∈ ℤ) ∧ ((𝐵 · 𝐸) ∈ ℤ ∧ (𝐶 · 𝐸) ∈ ℤ) ∧ (𝐴 ∥ ((𝐵 · 𝐷) − (𝐵 · 𝐸)) ∧ 𝐴 ∥ ((𝐵 · 𝐸) − (𝐶 · 𝐸)))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸)))
371, 4, 6, 8, 25, 35, 36syl222anc 1388 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153   · cmul 11160  cmin 11492  cz 12613  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-dvds 16291
This theorem is referenced by:  mzpcong  42984  jm2.18  43000  jm2.15nn0  43015  jm2.16nn0  43016  jm2.27c  43019
  Copyright terms: Public domain W3C validator