Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  congmul Structured version   Visualization version   GIF version

Theorem congmul 38998
Description: If two pairs of numbers are componentwise congruent, so are their products. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Assertion
Ref Expression
congmul (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸)))

Proof of Theorem congmul
StepHypRef Expression
1 simp11 1184 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∈ ℤ)
2 simp12 1185 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐵 ∈ ℤ)
3 simp2l 1180 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐷 ∈ ℤ)
42, 3zmulcld 11904 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐵 · 𝐷) ∈ ℤ)
5 simp2r 1181 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐸 ∈ ℤ)
62, 5zmulcld 11904 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐵 · 𝐸) ∈ ℤ)
7 simp13 1186 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐶 ∈ ℤ)
87, 5zmulcld 11904 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐶 · 𝐸) ∈ ℤ)
9 simp3r 1183 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ (𝐷𝐸))
10 zsubcl 11835 . . . . . 6 ((𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) → (𝐷𝐸) ∈ ℤ)
11103ad2ant2 1115 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐷𝐸) ∈ ℤ)
12 dvdsmultr2 15507 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐷𝐸) ∈ ℤ) → (𝐴 ∥ (𝐷𝐸) → 𝐴 ∥ (𝐵 · (𝐷𝐸))))
131, 2, 11, 12syl3anc 1352 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐴 ∥ (𝐷𝐸) → 𝐴 ∥ (𝐵 · (𝐷𝐸))))
149, 13mpd 15 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ (𝐵 · (𝐷𝐸)))
15 zcn 11796 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
16153ad2ant2 1115 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
17163ad2ant1 1114 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐵 ∈ ℂ)
18 zcn 11796 . . . . . 6 (𝐷 ∈ ℤ → 𝐷 ∈ ℂ)
1918adantr 473 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) → 𝐷 ∈ ℂ)
20193ad2ant2 1115 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐷 ∈ ℂ)
21 zcn 11796 . . . . . 6 (𝐸 ∈ ℤ → 𝐸 ∈ ℂ)
2221adantl 474 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) → 𝐸 ∈ ℂ)
23223ad2ant2 1115 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐸 ∈ ℂ)
2417, 20, 23subdid 10895 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐵 · (𝐷𝐸)) = ((𝐵 · 𝐷) − (𝐵 · 𝐸)))
2514, 24breqtrd 4951 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐵 · 𝐸)))
26 simp3l 1182 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ (𝐵𝐶))
272, 7zsubcld 11903 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐵𝐶) ∈ ℤ)
28 dvdsmultr1 15505 . . . . 5 ((𝐴 ∈ ℤ ∧ (𝐵𝐶) ∈ ℤ ∧ 𝐸 ∈ ℤ) → (𝐴 ∥ (𝐵𝐶) → 𝐴 ∥ ((𝐵𝐶) · 𝐸)))
291, 27, 5, 28syl3anc 1352 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → (𝐴 ∥ (𝐵𝐶) → 𝐴 ∥ ((𝐵𝐶) · 𝐸)))
3026, 29mpd 15 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵𝐶) · 𝐸))
31 zcn 11796 . . . . . 6 (𝐶 ∈ ℤ → 𝐶 ∈ ℂ)
32313ad2ant3 1116 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℂ)
33323ad2ant1 1114 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐶 ∈ ℂ)
3417, 33, 23subdird 10896 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → ((𝐵𝐶) · 𝐸) = ((𝐵 · 𝐸) − (𝐶 · 𝐸)))
3530, 34breqtrd 4951 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 · 𝐸) − (𝐶 · 𝐸)))
36 congtr 38996 . 2 (((𝐴 ∈ ℤ ∧ (𝐵 · 𝐷) ∈ ℤ) ∧ ((𝐵 · 𝐸) ∈ ℤ ∧ (𝐶 · 𝐸) ∈ ℤ) ∧ (𝐴 ∥ ((𝐵 · 𝐷) − (𝐵 · 𝐸)) ∧ 𝐴 ∥ ((𝐵 · 𝐸) − (𝐶 · 𝐸)))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸)))
371, 4, 6, 8, 25, 35, 36syl222anc 1367 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝐷 ∈ ℤ ∧ 𝐸 ∈ ℤ) ∧ (𝐴 ∥ (𝐵𝐶) ∧ 𝐴 ∥ (𝐷𝐸))) → 𝐴 ∥ ((𝐵 · 𝐷) − (𝐶 · 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069  wcel 2051   class class class wbr 4925  (class class class)co 6974  cc 10331   · cmul 10338  cmin 10668  cz 11791  cdvds 15465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-n0 11706  df-z 11792  df-dvds 15466
This theorem is referenced by:  mzpcong  39003  jm2.18  39019  jm2.15nn0  39034  jm2.16nn0  39035  jm2.27c  39038
  Copyright terms: Public domain W3C validator