Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submatminr1 Structured version   Visualization version   GIF version

Theorem submatminr1 33756
Description: If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateq.a 𝐴 = ((1...𝑁) Mat 𝑅)
submateq.b 𝐵 = (Base‘𝐴)
submateq.n (𝜑𝑁 ∈ ℕ)
submateq.i (𝜑𝐼 ∈ (1...𝑁))
submateq.j (𝜑𝐽 ∈ (1...𝑁))
submatminr1.r (𝜑𝑅 ∈ Ring)
submatminr1.m (𝜑𝑀𝐵)
submatminr1.e 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
Assertion
Ref Expression
submatminr1 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))

Proof of Theorem submatminr1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submateq.a . 2 𝐴 = ((1...𝑁) Mat 𝑅)
2 submateq.b . 2 𝐵 = (Base‘𝐴)
3 submateq.n . 2 (𝜑𝑁 ∈ ℕ)
4 submateq.i . 2 (𝜑𝐼 ∈ (1...𝑁))
5 submateq.j . 2 (𝜑𝐽 ∈ (1...𝑁))
6 submatminr1.m . 2 (𝜑𝑀𝐵)
7 submatminr1.e . . . 4 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
8 submatminr1.r . . . . . 6 (𝜑𝑅 ∈ Ring)
9 eqid 2740 . . . . . . 7 (1r𝑅) = (1r𝑅)
101, 2, 9minmar1marrep 22677 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r𝑅)))
118, 6, 10syl2anc 583 . . . . 5 (𝜑 → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r𝑅)))
1211oveqd 7465 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
137, 12eqtrid 2792 . . 3 (𝜑𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
14 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1514, 9ringidcl 20289 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
168, 15syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
171, 2marrepcl 22591 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽) ∈ 𝐵)
188, 6, 16, 4, 5, 17syl32anc 1378 . . 3 (𝜑 → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽) ∈ 𝐵)
1913, 18eqeltrd 2844 . 2 (𝜑𝐸𝐵)
20133ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
2120oveqd 7465 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗))
2263ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑀𝐵)
23163ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (1r𝑅) ∈ (Base‘𝑅))
2443ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐼 ∈ (1...𝑁))
2553ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐽 ∈ (1...𝑁))
26 simp2 1137 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ ((1...𝑁) ∖ {𝐼}))
2726eldifad 3988 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ (1...𝑁))
28 simp3 1138 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ ((1...𝑁) ∖ {𝐽}))
2928eldifad 3988 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ (1...𝑁))
30 eqid 2740 . . . . 5 ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅)
31 eqid 2740 . . . . 5 (0g𝑅) = (0g𝑅)
321, 2, 30, 31marrepeval 22590 . . . 4 (((𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
3322, 23, 24, 25, 27, 29, 32syl222anc 1386 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
34 eldifsn 4811 . . . . . . 7 (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑖 ∈ (1...𝑁) ∧ 𝑖𝐼))
3526, 34sylib 218 . . . . . 6 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖 ∈ (1...𝑁) ∧ 𝑖𝐼))
3635simprd 495 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖𝐼)
3736neneqd 2951 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → ¬ 𝑖 = 𝐼)
3837iffalsed 4559 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗))
3921, 33, 383eqtrrd 2785 . 2 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝑀𝑗) = (𝑖𝐸𝑗))
401, 2, 3, 4, 5, 6, 19, 39submateq 33755 1 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  ifcif 4548  {csn 4648  cfv 6573  (class class class)co 7448  1c1 11185  cn 12293  ...cfz 13567  Basecbs 17258  0gc0g 17499  1rcur 20208  Ringcrg 20260   Mat cmat 22432   matRRep cmarrep 22583   minMatR1 cminmar1 22660  subMat1csmat 33739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-mgp 20162  df-ur 20209  df-ring 20262  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mat 22433  df-marrep 22585  df-minmar1 22662  df-smat 33740
This theorem is referenced by:  madjusmdetlem1  33773
  Copyright terms: Public domain W3C validator