| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submatminr1 | Structured version Visualization version GIF version | ||
| Description: If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| Ref | Expression |
|---|---|
| submateq.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| submateq.b | ⊢ 𝐵 = (Base‘𝐴) |
| submateq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| submateq.i | ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
| submateq.j | ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
| submatminr1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| submatminr1.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| submatminr1.e | ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) |
| Ref | Expression |
|---|---|
| submatminr1 | ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submateq.a | . 2 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
| 2 | submateq.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | submateq.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | submateq.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) | |
| 5 | submateq.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) | |
| 6 | submatminr1.m | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 7 | submatminr1.e | . . . 4 ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) | |
| 8 | submatminr1.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 10 | 1, 2, 9 | minmar1marrep 22537 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))) |
| 11 | 8, 6, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))) |
| 12 | 11 | oveqd 7404 | . . . 4 ⊢ (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) |
| 13 | 7, 12 | eqtrid 2776 | . . 3 ⊢ (𝜑 → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) |
| 14 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 15 | 14, 9 | ringidcl 20174 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 16 | 8, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 17 | 1, 2 | marrepcl 22451 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽) ∈ 𝐵) |
| 18 | 8, 6, 16, 4, 5, 17 | syl32anc 1380 | . . 3 ⊢ (𝜑 → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽) ∈ 𝐵) |
| 19 | 13, 18 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 20 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) |
| 21 | 20 | oveqd 7404 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗)) |
| 22 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑀 ∈ 𝐵) |
| 23 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 24 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐼 ∈ (1...𝑁)) |
| 25 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐽 ∈ (1...𝑁)) |
| 26 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ ((1...𝑁) ∖ {𝐼})) | |
| 27 | 26 | eldifad 3926 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ (1...𝑁)) |
| 28 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) | |
| 29 | 28 | eldifad 3926 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ (1...𝑁)) |
| 30 | eqid 2729 | . . . . 5 ⊢ ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅) | |
| 31 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 32 | 1, 2, 30, 31 | marrepeval 22450 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) |
| 33 | 22, 23, 24, 25, 27, 29, 32 | syl222anc 1388 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) |
| 34 | eldifsn 4750 | . . . . . . 7 ⊢ (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 𝐼)) | |
| 35 | 26, 34 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 𝐼)) |
| 36 | 35 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ≠ 𝐼) |
| 37 | 36 | neneqd 2930 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → ¬ 𝑖 = 𝐼) |
| 38 | 37 | iffalsed 4499 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗)) |
| 39 | 21, 33, 38 | 3eqtrrd 2769 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝑀𝑗) = (𝑖𝐸𝑗)) |
| 40 | 1, 2, 3, 4, 5, 6, 19, 39 | submateq 33799 | 1 ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ifcif 4488 {csn 4589 ‘cfv 6511 (class class class)co 7387 1c1 11069 ℕcn 12186 ...cfz 13468 Basecbs 17179 0gc0g 17402 1rcur 20090 Ringcrg 20142 Mat cmat 22294 matRRep cmarrep 22443 minMatR1 cminmar1 22520 subMat1csmat 33783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-mgp 20050 df-ur 20091 df-ring 20144 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-mat 22295 df-marrep 22445 df-minmar1 22522 df-smat 33784 |
| This theorem is referenced by: madjusmdetlem1 33817 |
| Copyright terms: Public domain | W3C validator |