|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submatminr1 | Structured version Visualization version GIF version | ||
| Description: If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| submateq.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | 
| submateq.b | ⊢ 𝐵 = (Base‘𝐴) | 
| submateq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| submateq.i | ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) | 
| submateq.j | ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) | 
| submatminr1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| submatminr1.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) | 
| submatminr1.e | ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) | 
| Ref | Expression | 
|---|---|
| submatminr1 | ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | submateq.a | . 2 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
| 2 | submateq.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | submateq.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | submateq.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) | |
| 5 | submateq.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) | |
| 6 | submatminr1.m | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 7 | submatminr1.e | . . . 4 ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) | |
| 8 | submatminr1.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | eqid 2736 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 10 | 1, 2, 9 | minmar1marrep 22657 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))) | 
| 11 | 8, 6, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))) | 
| 12 | 11 | oveqd 7449 | . . . 4 ⊢ (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) | 
| 13 | 7, 12 | eqtrid 2788 | . . 3 ⊢ (𝜑 → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) | 
| 14 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 15 | 14, 9 | ringidcl 20263 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) | 
| 16 | 8, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) | 
| 17 | 1, 2 | marrepcl 22571 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽) ∈ 𝐵) | 
| 18 | 8, 6, 16, 4, 5, 17 | syl32anc 1379 | . . 3 ⊢ (𝜑 → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽) ∈ 𝐵) | 
| 19 | 13, 18 | eqeltrd 2840 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) | 
| 20 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) | 
| 21 | 20 | oveqd 7449 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗)) | 
| 22 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑀 ∈ 𝐵) | 
| 23 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (1r‘𝑅) ∈ (Base‘𝑅)) | 
| 24 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐼 ∈ (1...𝑁)) | 
| 25 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐽 ∈ (1...𝑁)) | 
| 26 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ ((1...𝑁) ∖ {𝐼})) | |
| 27 | 26 | eldifad 3962 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ (1...𝑁)) | 
| 28 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) | |
| 29 | 28 | eldifad 3962 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ (1...𝑁)) | 
| 30 | eqid 2736 | . . . . 5 ⊢ ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅) | |
| 31 | eqid 2736 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 32 | 1, 2, 30, 31 | marrepeval 22570 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) | 
| 33 | 22, 23, 24, 25, 27, 29, 32 | syl222anc 1387 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) | 
| 34 | eldifsn 4785 | . . . . . . 7 ⊢ (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 𝐼)) | |
| 35 | 26, 34 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 𝐼)) | 
| 36 | 35 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ≠ 𝐼) | 
| 37 | 36 | neneqd 2944 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → ¬ 𝑖 = 𝐼) | 
| 38 | 37 | iffalsed 4535 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗)) | 
| 39 | 21, 33, 38 | 3eqtrrd 2781 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝑀𝑗) = (𝑖𝐸𝑗)) | 
| 40 | 1, 2, 3, 4, 5, 6, 19, 39 | submateq 33809 | 1 ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∖ cdif 3947 ifcif 4524 {csn 4625 ‘cfv 6560 (class class class)co 7432 1c1 11157 ℕcn 12267 ...cfz 13548 Basecbs 17248 0gc0g 17485 1rcur 20179 Ringcrg 20231 Mat cmat 22412 matRRep cmarrep 22563 minMatR1 cminmar1 22640 subMat1csmat 33793 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-ot 4634 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-prds 17493 df-pws 17495 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-mgp 20139 df-ur 20180 df-ring 20233 df-sra 21173 df-rgmod 21174 df-dsmm 21753 df-frlm 21768 df-mat 22413 df-marrep 22565 df-minmar1 22642 df-smat 33794 | 
| This theorem is referenced by: madjusmdetlem1 33827 | 
| Copyright terms: Public domain | W3C validator |