| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submatminr1 | Structured version Visualization version GIF version | ||
| Description: If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| Ref | Expression |
|---|---|
| submateq.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| submateq.b | ⊢ 𝐵 = (Base‘𝐴) |
| submateq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| submateq.i | ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
| submateq.j | ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
| submatminr1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| submatminr1.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| submatminr1.e | ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) |
| Ref | Expression |
|---|---|
| submatminr1 | ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submateq.a | . 2 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
| 2 | submateq.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | submateq.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | submateq.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) | |
| 5 | submateq.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) | |
| 6 | submatminr1.m | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 7 | submatminr1.e | . . . 4 ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) | |
| 8 | submatminr1.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 10 | 1, 2, 9 | minmar1marrep 22513 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))) |
| 11 | 8, 6, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))) |
| 12 | 11 | oveqd 7386 | . . . 4 ⊢ (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) |
| 13 | 7, 12 | eqtrid 2776 | . . 3 ⊢ (𝜑 → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) |
| 14 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 15 | 14, 9 | ringidcl 20150 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 16 | 8, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 17 | 1, 2 | marrepcl 22427 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽) ∈ 𝐵) |
| 18 | 8, 6, 16, 4, 5, 17 | syl32anc 1380 | . . 3 ⊢ (𝜑 → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽) ∈ 𝐵) |
| 19 | 13, 18 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 20 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) |
| 21 | 20 | oveqd 7386 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗)) |
| 22 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑀 ∈ 𝐵) |
| 23 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 24 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐼 ∈ (1...𝑁)) |
| 25 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐽 ∈ (1...𝑁)) |
| 26 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ ((1...𝑁) ∖ {𝐼})) | |
| 27 | 26 | eldifad 3923 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ (1...𝑁)) |
| 28 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) | |
| 29 | 28 | eldifad 3923 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ (1...𝑁)) |
| 30 | eqid 2729 | . . . . 5 ⊢ ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅) | |
| 31 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 32 | 1, 2, 30, 31 | marrepeval 22426 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) |
| 33 | 22, 23, 24, 25, 27, 29, 32 | syl222anc 1388 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) |
| 34 | eldifsn 4746 | . . . . . . 7 ⊢ (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 𝐼)) | |
| 35 | 26, 34 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 𝐼)) |
| 36 | 35 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ≠ 𝐼) |
| 37 | 36 | neneqd 2930 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → ¬ 𝑖 = 𝐼) |
| 38 | 37 | iffalsed 4495 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗)) |
| 39 | 21, 33, 38 | 3eqtrrd 2769 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝑀𝑗) = (𝑖𝐸𝑗)) |
| 40 | 1, 2, 3, 4, 5, 6, 19, 39 | submateq 33772 | 1 ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 ifcif 4484 {csn 4585 ‘cfv 6499 (class class class)co 7369 1c1 11045 ℕcn 12162 ...cfz 13444 Basecbs 17155 0gc0g 17378 1rcur 20066 Ringcrg 20118 Mat cmat 22270 matRRep cmarrep 22419 minMatR1 cminmar1 22496 subMat1csmat 33756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-mgp 20026 df-ur 20067 df-ring 20120 df-sra 21056 df-rgmod 21057 df-dsmm 21617 df-frlm 21632 df-mat 22271 df-marrep 22421 df-minmar1 22498 df-smat 33757 |
| This theorem is referenced by: madjusmdetlem1 33790 |
| Copyright terms: Public domain | W3C validator |