Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submatminr1 Structured version   Visualization version   GIF version

Theorem submatminr1 33796
Description: If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.)
Hypotheses
Ref Expression
submateq.a 𝐴 = ((1...𝑁) Mat 𝑅)
submateq.b 𝐵 = (Base‘𝐴)
submateq.n (𝜑𝑁 ∈ ℕ)
submateq.i (𝜑𝐼 ∈ (1...𝑁))
submateq.j (𝜑𝐽 ∈ (1...𝑁))
submatminr1.r (𝜑𝑅 ∈ Ring)
submatminr1.m (𝜑𝑀𝐵)
submatminr1.e 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
Assertion
Ref Expression
submatminr1 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))

Proof of Theorem submatminr1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submateq.a . 2 𝐴 = ((1...𝑁) Mat 𝑅)
2 submateq.b . 2 𝐵 = (Base‘𝐴)
3 submateq.n . 2 (𝜑𝑁 ∈ ℕ)
4 submateq.i . 2 (𝜑𝐼 ∈ (1...𝑁))
5 submateq.j . 2 (𝜑𝐽 ∈ (1...𝑁))
6 submatminr1.m . 2 (𝜑𝑀𝐵)
7 submatminr1.e . . . 4 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
8 submatminr1.r . . . . . 6 (𝜑𝑅 ∈ Ring)
9 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
101, 2, 9minmar1marrep 22554 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r𝑅)))
118, 6, 10syl2anc 584 . . . . 5 (𝜑 → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r𝑅)))
1211oveqd 7370 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
137, 12eqtrid 2776 . . 3 (𝜑𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
14 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1514, 9ringidcl 20169 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
168, 15syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
171, 2marrepcl 22468 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽) ∈ 𝐵)
188, 6, 16, 4, 5, 17syl32anc 1380 . . 3 (𝜑 → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽) ∈ 𝐵)
1913, 18eqeltrd 2828 . 2 (𝜑𝐸𝐵)
20133ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽))
2120oveqd 7370 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗))
2263ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑀𝐵)
23163ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (1r𝑅) ∈ (Base‘𝑅))
2443ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐼 ∈ (1...𝑁))
2553ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐽 ∈ (1...𝑁))
26 simp2 1137 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ ((1...𝑁) ∖ {𝐼}))
2726eldifad 3917 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ (1...𝑁))
28 simp3 1138 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ ((1...𝑁) ∖ {𝐽}))
2928eldifad 3917 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ (1...𝑁))
30 eqid 2729 . . . . 5 ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅)
31 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
321, 2, 30, 31marrepeval 22467 . . . 4 (((𝑀𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
3322, 23, 24, 25, 27, 29, 32syl222anc 1388 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))
34 eldifsn 4740 . . . . . . 7 (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑖 ∈ (1...𝑁) ∧ 𝑖𝐼))
3526, 34sylib 218 . . . . . 6 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖 ∈ (1...𝑁) ∧ 𝑖𝐼))
3635simprd 495 . . . . 5 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖𝐼)
3736neneqd 2930 . . . 4 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → ¬ 𝑖 = 𝐼)
3837iffalsed 4489 . . 3 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗))
3921, 33, 383eqtrrd 2769 . 2 ((𝜑𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝑀𝑗) = (𝑖𝐸𝑗))
401, 2, 3, 4, 5, 6, 19, 39submateq 33795 1 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3902  ifcif 4478  {csn 4579  cfv 6486  (class class class)co 7353  1c1 11029  cn 12147  ...cfz 13429  Basecbs 17139  0gc0g 17362  1rcur 20085  Ringcrg 20137   Mat cmat 22311   matRRep cmarrep 22460   minMatR1 cminmar1 22537  subMat1csmat 33779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-fzo 13577  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-hom 17204  df-cco 17205  df-0g 17364  df-prds 17370  df-pws 17372  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-mgp 20045  df-ur 20086  df-ring 20139  df-sra 21096  df-rgmod 21097  df-dsmm 21658  df-frlm 21673  df-mat 22312  df-marrep 22462  df-minmar1 22539  df-smat 33780
This theorem is referenced by:  madjusmdetlem1  33813
  Copyright terms: Public domain W3C validator