| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submatminr1 | Structured version Visualization version GIF version | ||
| Description: If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| Ref | Expression |
|---|---|
| submateq.a | ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| submateq.b | ⊢ 𝐵 = (Base‘𝐴) |
| submateq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| submateq.i | ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
| submateq.j | ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
| submatminr1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| submatminr1.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| submatminr1.e | ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) |
| Ref | Expression |
|---|---|
| submatminr1 | ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submateq.a | . 2 ⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | |
| 2 | submateq.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | submateq.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | submateq.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) | |
| 5 | submateq.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) | |
| 6 | submatminr1.m | . 2 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 7 | submatminr1.e | . . . 4 ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) | |
| 8 | submatminr1.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | eqid 2730 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 10 | 1, 2, 9 | minmar1marrep 22544 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))) |
| 11 | 8, 6, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (((1...𝑁) minMatR1 𝑅)‘𝑀) = (𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))) |
| 12 | 11 | oveqd 7407 | . . . 4 ⊢ (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) |
| 13 | 7, 12 | eqtrid 2777 | . . 3 ⊢ (𝜑 → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) |
| 14 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 15 | 14, 9 | ringidcl 20181 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 16 | 8, 15 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 17 | 1, 2 | marrepcl 22458 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽) ∈ 𝐵) |
| 18 | 8, 6, 16, 4, 5, 17 | syl32anc 1380 | . . 3 ⊢ (𝜑 → (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽) ∈ 𝐵) |
| 19 | 13, 18 | eqeltrd 2829 | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 20 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐸 = (𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)) |
| 21 | 20 | oveqd 7407 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗)) |
| 22 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑀 ∈ 𝐵) |
| 23 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 24 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐼 ∈ (1...𝑁)) |
| 25 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝐽 ∈ (1...𝑁)) |
| 26 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ ((1...𝑁) ∖ {𝐼})) | |
| 27 | 26 | eldifad 3929 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ∈ (1...𝑁)) |
| 28 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) | |
| 29 | 28 | eldifad 3929 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑗 ∈ (1...𝑁)) |
| 30 | eqid 2730 | . . . . 5 ⊢ ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅) | |
| 31 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 32 | 1, 2, 30, 31 | marrepeval 22457 | . . . 4 ⊢ (((𝑀 ∈ 𝐵 ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁))) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) |
| 33 | 22, 23, 24, 25, 27, 29, 32 | syl222anc 1388 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖(𝐼(𝑀((1...𝑁) matRRep 𝑅)(1r‘𝑅))𝐽)𝑗) = if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) |
| 34 | eldifsn 4753 | . . . . . . 7 ⊢ (𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ↔ (𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 𝐼)) | |
| 35 | 26, 34 | sylib 218 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 𝐼)) |
| 36 | 35 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → 𝑖 ≠ 𝐼) |
| 37 | 36 | neneqd 2931 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → ¬ 𝑖 = 𝐼) |
| 38 | 37 | iffalsed 4502 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → if(𝑖 = 𝐼, if(𝑗 = 𝐽, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)) = (𝑖𝑀𝑗)) |
| 39 | 21, 33, 38 | 3eqtrrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝑀𝑗) = (𝑖𝐸𝑗)) |
| 40 | 1, 2, 3, 4, 5, 6, 19, 39 | submateq 33806 | 1 ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 ifcif 4491 {csn 4592 ‘cfv 6514 (class class class)co 7390 1c1 11076 ℕcn 12193 ...cfz 13475 Basecbs 17186 0gc0g 17409 1rcur 20097 Ringcrg 20149 Mat cmat 22301 matRRep cmarrep 22450 minMatR1 cminmar1 22527 subMat1csmat 33790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-mgp 20057 df-ur 20098 df-ring 20151 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-mat 22302 df-marrep 22452 df-minmar1 22529 df-smat 33791 |
| This theorem is referenced by: madjusmdetlem1 33824 |
| Copyright terms: Public domain | W3C validator |