MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem2 Structured version   Visualization version   GIF version

Theorem dchrisum0flblem2 26657
Description: Lemma for dchrisum0flb 26658. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.1 (𝜑𝐴 ∈ (ℤ‘2))
dchrisum0flb.2 (𝜑𝑃 ∈ ℙ)
dchrisum0flb.3 (𝜑𝑃𝐴)
dchrisum0flb.4 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
Assertion
Ref Expression
dchrisum0flblem2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑦, 1   𝑦,𝐹   𝑞,𝑏,𝑣,𝑦,𝐴   𝑁,𝑞,𝑦   𝑃,𝑏,𝑞,𝑣,𝑦   𝑦,𝑍   𝑦,𝐷   𝐿,𝑏,𝑣,𝑦   𝑋,𝑏,𝑣,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑦,𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flblem2
StepHypRef Expression
1 breq1 5077 . . 3 (1 = if((√‘𝐴) ∈ ℕ, 1, 0) → (1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
2 breq1 5077 . . 3 (0 = if((√‘𝐴) ∈ ℕ, 1, 0) → (0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
3 1t1e1 12135 . . . 4 (1 · 1) = 1
4 dchrisum0flb.2 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℙ)
54adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℙ)
6 nnq 12702 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℚ)
76adantl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℚ)
8 nnne0 12007 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ≠ 0)
98adantl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ≠ 0)
10 2z 12352 . . . . . . . . . . . . . . 15 2 ∈ ℤ
1110a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℤ)
12 pcexp 16560 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((√‘𝐴) ∈ ℚ ∧ (√‘𝐴) ≠ 0) ∧ 2 ∈ ℤ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
135, 7, 9, 11, 12syl121anc 1374 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
14 dchrisum0flb.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ (ℤ‘2))
15 eluz2nn 12624 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ)
1716nncnd 11989 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
1817adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℂ)
1918sqsqrtd 15151 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴)↑2) = 𝐴)
2019oveq2d 7291 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (𝑃 pCnt 𝐴))
21 2cnd 12051 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℂ)
22 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℕ)
235, 22pccld 16551 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℕ0)
2423nn0cnd 12295 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℂ)
2521, 24mulcomd 10996 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (2 · (𝑃 pCnt (√‘𝐴))) = ((𝑃 pCnt (√‘𝐴)) · 2))
2613, 20, 253eqtr3rd 2787 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃 pCnt (√‘𝐴)) · 2) = (𝑃 pCnt 𝐴))
2726oveq2d 7291 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = (𝑃↑(𝑃 pCnt 𝐴)))
28 prmnn 16379 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
295, 28syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℕ)
3029nncnd 11989 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℂ)
31 2nn0 12250 . . . . . . . . . . . . 13 2 ∈ ℕ0
3231a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℕ0)
3330, 32, 23expmuld 13867 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3427, 33eqtr3d 2780 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3534fveq2d 6778 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)))
3629, 23nnexpcld 13960 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℕ)
3736nnrpd 12770 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ+)
3837rprege0d 12779 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))))
39 sqrtsq 14981 . . . . . . . . . 10 (((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4135, 40eqtrd 2778 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4241, 36eqeltrd 2839 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
4342iftrued 4467 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) = 1)
44 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
45 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
46 rpvmasum.a . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
47 rpvmasum2.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
48 rpvmasum2.d . . . . . . . 8 𝐷 = (Base‘𝐺)
49 rpvmasum2.1 . . . . . . . 8 1 = (0g𝐺)
50 dchrisum0f.f . . . . . . . 8 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
51 dchrisum0f.x . . . . . . . 8 (𝜑𝑋𝐷)
52 dchrisum0flb.r . . . . . . . 8 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
534, 16pccld 16551 . . . . . . . 8 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ0)
5444, 45, 46, 47, 48, 49, 50, 51, 52, 4, 53dchrisum0flblem1 26656 . . . . . . 7 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5554adantr 481 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5643, 55eqbrtrrd 5098 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
57 pcdvds 16565 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
584, 16, 57syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
594, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
6059, 53nnexpcld 13960 . . . . . . . . . . . . 13 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
61 nndivdvds 15972 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6216, 60, 61syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6358, 62mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
6463nnzd 12425 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6564adantr 481 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6616adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℕ)
6766nnrpd 12770 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ+)
6867rprege0d 12779 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6960adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
7069nnrpd 12770 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+)
71 sqrtdiv 14977 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
7268, 70, 71syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
73 nnz 12342 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℤ)
74 znq 12692 . . . . . . . . . . 11 (((√‘𝐴) ∈ ℤ ∧ (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7573, 42, 74syl2an2 683 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7672, 75eqeltrd 2839 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
77 zsqrtelqelz 16462 . . . . . . . . 9 (((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7865, 76, 77syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7963adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
8079nnrpd 12770 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ+)
8180sqrtgt0d 15124 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
82 elnnz 12329 . . . . . . . 8 ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ ↔ ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ ∧ 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
8378, 81, 82sylanbrc 583 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ)
8483iftrued 4467 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) = 1)
85 fveq2 6774 . . . . . . . . . . 11 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (√‘𝑦) = (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8685eleq1d 2823 . . . . . . . . . 10 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ))
8786ifbid 4482 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
88 fveq2 6774 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (𝐹𝑦) = (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8987, 88breq12d 5087 . . . . . . . 8 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
90 dchrisum0flb.4 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
91 nnuz 12621 . . . . . . . . . 10 ℕ = (ℤ‘1)
9263, 91eleqtrdi 2849 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1))
9316nnzd 12425 . . . . . . . . 9 (𝜑𝐴 ∈ ℤ)
9459nnred 11988 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
95 dchrisum0flb.3 . . . . . . . . . . . . 13 (𝜑𝑃𝐴)
96 pcelnn 16571 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
974, 16, 96syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
9895, 97mpbird 256 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ)
99 prmuz2 16401 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
100 eluz2gt1 12660 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
1014, 99, 1003syl 18 . . . . . . . . . . . 12 (𝜑 → 1 < 𝑃)
102 expgt1 13821 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ (𝑃 pCnt 𝐴) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
10394, 98, 101, 102syl3anc 1370 . . . . . . . . . . 11 (𝜑 → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
104 1red 10976 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
105 0lt1 11497 . . . . . . . . . . . . 13 0 < 1
106105a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
10760nnred 11988 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ)
10860nngt0d 12022 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑃↑(𝑃 pCnt 𝐴)))
10916nnred 11988 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
11016nngt0d 12022 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐴)
111 ltdiv2 11861 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ ∧ 0 < (𝑃↑(𝑃 pCnt 𝐴))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
112104, 106, 107, 108, 109, 110, 111syl222anc 1385 . . . . . . . . . . 11 (𝜑 → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
113103, 112mpbid 231 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1))
11417div1d 11743 . . . . . . . . . 10 (𝜑 → (𝐴 / 1) = 𝐴)
115113, 114breqtrd 5100 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴)
116 elfzo2 13390 . . . . . . . . 9 ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴) ↔ ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1) ∧ 𝐴 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴))
11792, 93, 115, 116syl3anbrc 1342 . . . . . . . 8 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴))
11889, 90, 117rspcdva 3562 . . . . . . 7 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
119118adantr 481 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
12084, 119eqbrtrrd 5098 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
121 1re 10975 . . . . . . . 8 1 ∈ ℝ
122 0le1 11498 . . . . . . . 8 0 ≤ 1
123121, 122pm3.2i 471 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
124123a1i 11 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 ∈ ℝ ∧ 0 ≤ 1))
12544, 45, 46, 47, 48, 49, 50, 51, 52dchrisum0ff 26655 . . . . . . . 8 (𝜑𝐹:ℕ⟶ℝ)
126125, 60ffvelrnd 6962 . . . . . . 7 (𝜑 → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
127126adantr 481 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
128125, 63ffvelrnd 6962 . . . . . . 7 (𝜑 → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
129128adantr 481 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
130 lemul12a 11833 . . . . . 6 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
131124, 127, 124, 129, 130syl22anc 836 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
13256, 120, 131mp2and 696 . . . 4 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1333, 132eqbrtrrid 5110 . . 3 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
134 0red 10978 . . . . . 6 (𝜑 → 0 ∈ ℝ)
135 0re 10977 . . . . . . . 8 0 ∈ ℝ
136121, 135ifcli 4506 . . . . . . 7 if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ
137136a1i 11 . . . . . 6 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ)
138 breq2 5078 . . . . . . . 8 (1 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
139 breq2 5078 . . . . . . . 8 (0 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
140 0le0 12074 . . . . . . . 8 0 ≤ 0
141138, 139, 122, 140keephyp 4530 . . . . . . 7 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)
142141a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0))
143134, 137, 126, 142, 54letrd 11132 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
144121, 135ifcli 4506 . . . . . . 7 if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ
145144a1i 11 . . . . . 6 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ)
146 breq2 5078 . . . . . . . 8 (1 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
147 breq2 5078 . . . . . . . 8 (0 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
148146, 147, 122, 140keephyp 4530 . . . . . . 7 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)
149148a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
150134, 145, 128, 149, 118letrd 11132 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
151126, 128, 143, 150mulge0d 11552 . . . 4 (𝜑 → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
152151adantr 481 . . 3 ((𝜑 ∧ ¬ (√‘𝐴) ∈ ℕ) → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1531, 2, 133, 152ifbothda 4497 . 2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
15460nncnd 11989 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℂ)
15560nnne0d 12023 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ≠ 0)
15617, 154, 155divcan2d 11753 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 𝐴)
157156fveq2d 6778 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = (𝐹𝐴))
158 pcndvds2 16569 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
1594, 16, 158syl2anc 584 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
160 coprm 16416 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ) → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
1614, 64, 160syl2anc 584 . . . . . 6 (𝜑 → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
162159, 161mpbid 231 . . . . 5 (𝜑 → (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
163 prmz 16380 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1644, 163syl 17 . . . . . 6 (𝜑𝑃 ∈ ℤ)
165 rpexp1i 16428 . . . . . 6 ((𝑃 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
166164, 64, 53, 165syl3anc 1370 . . . . 5 (𝜑 → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
167162, 166mpd 15 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
16844, 45, 46, 47, 48, 49, 50, 51, 60, 63, 167dchrisum0fmul 26654 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
169157, 168eqtr3d 2780 . 2 (𝜑 → (𝐹𝐴) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
170153, 169breqtrrd 5102 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  ifcif 4459   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  cq 12688  +crp 12730  ..^cfzo 13382  cexp 13782  csqrt 14944  Σcsu 15397  cdvds 15963   gcd cgcd 16201  cprime 16376   pCnt cpc 16537  Basecbs 16912  0gc0g 17150  ℤRHomczrh 20701  ℤ/nczn 20704  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-numer 16439  df-denom 16440  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cntz 18923  df-od 19136  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-dchr 26381
This theorem is referenced by:  dchrisum0flb  26658
  Copyright terms: Public domain W3C validator