MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem2 Structured version   Visualization version   GIF version

Theorem dchrisum0flblem2 27453
Description: Lemma for dchrisum0flb 27454. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.1 (𝜑𝐴 ∈ (ℤ‘2))
dchrisum0flb.2 (𝜑𝑃 ∈ ℙ)
dchrisum0flb.3 (𝜑𝑃𝐴)
dchrisum0flb.4 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
Assertion
Ref Expression
dchrisum0flblem2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑦, 1   𝑦,𝐹   𝑞,𝑏,𝑣,𝑦,𝐴   𝑁,𝑞,𝑦   𝑃,𝑏,𝑞,𝑣,𝑦   𝑦,𝑍   𝑦,𝐷   𝐿,𝑏,𝑣,𝑦   𝑋,𝑏,𝑣,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑦,𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flblem2
StepHypRef Expression
1 breq1 5096 . . 3 (1 = if((√‘𝐴) ∈ ℕ, 1, 0) → (1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
2 breq1 5096 . . 3 (0 = if((√‘𝐴) ∈ ℕ, 1, 0) → (0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
3 1t1e1 12288 . . . 4 (1 · 1) = 1
4 dchrisum0flb.2 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℙ)
54adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℙ)
6 nnq 12866 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℚ)
76adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℚ)
8 nnne0 12165 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ≠ 0)
98adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ≠ 0)
10 2z 12510 . . . . . . . . . . . . . . 15 2 ∈ ℤ
1110a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℤ)
12 pcexp 16777 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((√‘𝐴) ∈ ℚ ∧ (√‘𝐴) ≠ 0) ∧ 2 ∈ ℤ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
135, 7, 9, 11, 12syl121anc 1377 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
14 dchrisum0flb.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ (ℤ‘2))
15 eluz2nn 12792 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ)
1716nncnd 12147 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
1817adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℂ)
1918sqsqrtd 15355 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴)↑2) = 𝐴)
2019oveq2d 7368 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (𝑃 pCnt 𝐴))
21 2cnd 12209 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℂ)
22 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℕ)
235, 22pccld 16768 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℕ0)
2423nn0cnd 12450 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℂ)
2521, 24mulcomd 11139 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (2 · (𝑃 pCnt (√‘𝐴))) = ((𝑃 pCnt (√‘𝐴)) · 2))
2613, 20, 253eqtr3rd 2775 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃 pCnt (√‘𝐴)) · 2) = (𝑃 pCnt 𝐴))
2726oveq2d 7368 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = (𝑃↑(𝑃 pCnt 𝐴)))
28 prmnn 16591 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
295, 28syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℕ)
3029nncnd 12147 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℂ)
31 2nn0 12404 . . . . . . . . . . . . 13 2 ∈ ℕ0
3231a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℕ0)
3330, 32, 23expmuld 14062 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3427, 33eqtr3d 2768 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3534fveq2d 6832 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)))
3629, 23nnexpcld 14158 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℕ)
3736nnrpd 12938 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ+)
3837rprege0d 12947 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))))
39 sqrtsq 15182 . . . . . . . . . 10 (((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4135, 40eqtrd 2766 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4241, 36eqeltrd 2831 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
4342iftrued 4482 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) = 1)
44 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
45 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
46 rpvmasum.a . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
47 rpvmasum2.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
48 rpvmasum2.d . . . . . . . 8 𝐷 = (Base‘𝐺)
49 rpvmasum2.1 . . . . . . . 8 1 = (0g𝐺)
50 dchrisum0f.f . . . . . . . 8 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
51 dchrisum0f.x . . . . . . . 8 (𝜑𝑋𝐷)
52 dchrisum0flb.r . . . . . . . 8 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
534, 16pccld 16768 . . . . . . . 8 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ0)
5444, 45, 46, 47, 48, 49, 50, 51, 52, 4, 53dchrisum0flblem1 27452 . . . . . . 7 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5554adantr 480 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5643, 55eqbrtrrd 5117 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
57 pcdvds 16782 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
584, 16, 57syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
594, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
6059, 53nnexpcld 14158 . . . . . . . . . . . . 13 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
61 nndivdvds 16178 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6216, 60, 61syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6358, 62mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
6463nnzd 12501 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6564adantr 480 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6616adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℕ)
6766nnrpd 12938 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ+)
6867rprege0d 12947 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6960adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
7069nnrpd 12938 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+)
71 sqrtdiv 15178 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
7268, 70, 71syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
73 nnz 12495 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℤ)
74 znq 12856 . . . . . . . . . . 11 (((√‘𝐴) ∈ ℤ ∧ (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7573, 42, 74syl2an2 686 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7672, 75eqeltrd 2831 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
77 zsqrtelqelz 16675 . . . . . . . . 9 (((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7865, 76, 77syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7963adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
8079nnrpd 12938 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ+)
8180sqrtgt0d 15326 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
82 elnnz 12484 . . . . . . . 8 ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ ↔ ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ ∧ 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
8378, 81, 82sylanbrc 583 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ)
8483iftrued 4482 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) = 1)
85 fveq2 6828 . . . . . . . . . . 11 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (√‘𝑦) = (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8685eleq1d 2816 . . . . . . . . . 10 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ))
8786ifbid 4498 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
88 fveq2 6828 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (𝐹𝑦) = (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8987, 88breq12d 5106 . . . . . . . 8 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
90 dchrisum0flb.4 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
91 nnuz 12781 . . . . . . . . . 10 ℕ = (ℤ‘1)
9263, 91eleqtrdi 2841 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1))
9316nnzd 12501 . . . . . . . . 9 (𝜑𝐴 ∈ ℤ)
9459nnred 12146 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
95 dchrisum0flb.3 . . . . . . . . . . . . 13 (𝜑𝑃𝐴)
96 pcelnn 16788 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
974, 16, 96syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
9895, 97mpbird 257 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ)
99 prmuz2 16613 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
100 eluz2gt1 12824 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
1014, 99, 1003syl 18 . . . . . . . . . . . 12 (𝜑 → 1 < 𝑃)
102 expgt1 14013 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ (𝑃 pCnt 𝐴) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
10394, 98, 101, 102syl3anc 1373 . . . . . . . . . . 11 (𝜑 → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
104 1red 11119 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
105 0lt1 11645 . . . . . . . . . . . . 13 0 < 1
106105a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
10760nnred 12146 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ)
10860nngt0d 12180 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑃↑(𝑃 pCnt 𝐴)))
10916nnred 12146 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
11016nngt0d 12180 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐴)
111 ltdiv2 12014 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ ∧ 0 < (𝑃↑(𝑃 pCnt 𝐴))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
112104, 106, 107, 108, 109, 110, 111syl222anc 1388 . . . . . . . . . . 11 (𝜑 → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
113103, 112mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1))
11417div1d 11895 . . . . . . . . . 10 (𝜑 → (𝐴 / 1) = 𝐴)
115113, 114breqtrd 5119 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴)
116 elfzo2 13568 . . . . . . . . 9 ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴) ↔ ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1) ∧ 𝐴 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴))
11792, 93, 115, 116syl3anbrc 1344 . . . . . . . 8 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴))
11889, 90, 117rspcdva 3573 . . . . . . 7 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
119118adantr 480 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
12084, 119eqbrtrrd 5117 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
121 1re 11118 . . . . . . . 8 1 ∈ ℝ
122 0le1 11646 . . . . . . . 8 0 ≤ 1
123121, 122pm3.2i 470 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
124123a1i 11 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 ∈ ℝ ∧ 0 ≤ 1))
12544, 45, 46, 47, 48, 49, 50, 51, 52dchrisum0ff 27451 . . . . . . . 8 (𝜑𝐹:ℕ⟶ℝ)
126125, 60ffvelcdmd 7024 . . . . . . 7 (𝜑 → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
127126adantr 480 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
128125, 63ffvelcdmd 7024 . . . . . . 7 (𝜑 → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
129128adantr 480 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
130 lemul12a 11985 . . . . . 6 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
131124, 127, 124, 129, 130syl22anc 838 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
13256, 120, 131mp2and 699 . . . 4 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1333, 132eqbrtrrid 5129 . . 3 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
134 0red 11121 . . . . . 6 (𝜑 → 0 ∈ ℝ)
135 0re 11120 . . . . . . . 8 0 ∈ ℝ
136121, 135ifcli 4522 . . . . . . 7 if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ
137136a1i 11 . . . . . 6 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ)
138 breq2 5097 . . . . . . . 8 (1 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
139 breq2 5097 . . . . . . . 8 (0 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
140 0le0 12232 . . . . . . . 8 0 ≤ 0
141138, 139, 122, 140keephyp 4546 . . . . . . 7 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)
142141a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0))
143134, 137, 126, 142, 54letrd 11276 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
144121, 135ifcli 4522 . . . . . . 7 if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ
145144a1i 11 . . . . . 6 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ)
146 breq2 5097 . . . . . . . 8 (1 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
147 breq2 5097 . . . . . . . 8 (0 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
148146, 147, 122, 140keephyp 4546 . . . . . . 7 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)
149148a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
150134, 145, 128, 149, 118letrd 11276 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
151126, 128, 143, 150mulge0d 11700 . . . 4 (𝜑 → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
152151adantr 480 . . 3 ((𝜑 ∧ ¬ (√‘𝐴) ∈ ℕ) → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1531, 2, 133, 152ifbothda 4513 . 2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
15460nncnd 12147 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℂ)
15560nnne0d 12181 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ≠ 0)
15617, 154, 155divcan2d 11905 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 𝐴)
157156fveq2d 6832 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = (𝐹𝐴))
158 pcndvds2 16786 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
1594, 16, 158syl2anc 584 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
160 coprm 16628 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ) → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
1614, 64, 160syl2anc 584 . . . . . 6 (𝜑 → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
162159, 161mpbid 232 . . . . 5 (𝜑 → (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
163 prmz 16592 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1644, 163syl 17 . . . . . 6 (𝜑𝑃 ∈ ℤ)
165 rpexp1i 16640 . . . . . 6 ((𝑃 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
166164, 64, 53, 165syl3anc 1373 . . . . 5 (𝜑 → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
167162, 166mpd 15 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
16844, 45, 46, 47, 48, 49, 50, 51, 60, 63, 167dchrisum0fmul 27450 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
169157, 168eqtr3d 2768 . 2 (𝜑 → (𝐹𝐴) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
170153, 169breqtrrd 5121 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  ifcif 4474   class class class wbr 5093  cmpt 5174  wf 6483  cfv 6487  (class class class)co 7352  cc 11010  cr 11011  0cc0 11012  1c1 11013   · cmul 11017   < clt 11152  cle 11153   / cdiv 11780  cn 12131  2c2 12186  0cn0 12387  cz 12474  cuz 12738  cq 12852  +crp 12896  ..^cfzo 13560  cexp 13974  csqrt 15146  Σcsu 15599  cdvds 16169   gcd cgcd 16411  cprime 16588   pCnt cpc 16754  Basecbs 17126  0gc0g 17349  ℤRHomczrh 21442  ℤ/nczn 21445  DChrcdchr 27176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091  ax-mulf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-ec 8630  df-qs 8634  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9838  df-acn 9841  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13255  df-ioc 13256  df-ico 13257  df-icc 13258  df-fz 13414  df-fzo 13561  df-fl 13702  df-mod 13780  df-seq 13915  df-exp 13975  df-fac 14187  df-bc 14216  df-hash 14244  df-shft 14980  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-limsup 15384  df-clim 15401  df-rlim 15402  df-sum 15600  df-ef 15980  df-sin 15982  df-cos 15983  df-pi 15985  df-dvds 16170  df-gcd 16412  df-prm 16589  df-numer 16652  df-denom 16653  df-pc 16755  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-rest 17332  df-topn 17333  df-0g 17351  df-gsum 17352  df-topgen 17353  df-pt 17354  df-prds 17357  df-xrs 17412  df-qtop 17417  df-imas 17418  df-qus 17419  df-xps 17420  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-mulg 18987  df-subg 19042  df-nsg 19043  df-eqg 19044  df-ghm 19131  df-cntz 19235  df-od 19446  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-dvr 20325  df-rhm 20396  df-subrng 20467  df-subrg 20491  df-drng 20652  df-lmod 20801  df-lss 20871  df-lsp 20911  df-sra 21113  df-rgmod 21114  df-lidl 21151  df-rsp 21152  df-2idl 21193  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-zring 21390  df-zrh 21446  df-zn 21449  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-cxp 26499  df-dchr 27177
This theorem is referenced by:  dchrisum0flb  27454
  Copyright terms: Public domain W3C validator