MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem2 Structured version   Visualization version   GIF version

Theorem dchrisum0flblem2 27436
Description: Lemma for dchrisum0flb 27437. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.1 (𝜑𝐴 ∈ (ℤ‘2))
dchrisum0flb.2 (𝜑𝑃 ∈ ℙ)
dchrisum0flb.3 (𝜑𝑃𝐴)
dchrisum0flb.4 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
Assertion
Ref Expression
dchrisum0flblem2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑦, 1   𝑦,𝐹   𝑞,𝑏,𝑣,𝑦,𝐴   𝑁,𝑞,𝑦   𝑃,𝑏,𝑞,𝑣,𝑦   𝑦,𝑍   𝑦,𝐷   𝐿,𝑏,𝑣,𝑦   𝑋,𝑏,𝑣,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑦,𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flblem2
StepHypRef Expression
1 breq1 5098 . . 3 (1 = if((√‘𝐴) ∈ ℕ, 1, 0) → (1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
2 breq1 5098 . . 3 (0 = if((√‘𝐴) ∈ ℕ, 1, 0) → (0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
3 1t1e1 12303 . . . 4 (1 · 1) = 1
4 dchrisum0flb.2 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℙ)
54adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℙ)
6 nnq 12881 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℚ)
76adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℚ)
8 nnne0 12180 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ≠ 0)
98adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ≠ 0)
10 2z 12525 . . . . . . . . . . . . . . 15 2 ∈ ℤ
1110a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℤ)
12 pcexp 16789 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((√‘𝐴) ∈ ℚ ∧ (√‘𝐴) ≠ 0) ∧ 2 ∈ ℤ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
135, 7, 9, 11, 12syl121anc 1377 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
14 dchrisum0flb.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ (ℤ‘2))
15 eluz2nn 12807 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ)
1716nncnd 12162 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
1817adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℂ)
1918sqsqrtd 15367 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴)↑2) = 𝐴)
2019oveq2d 7369 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (𝑃 pCnt 𝐴))
21 2cnd 12224 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℂ)
22 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℕ)
235, 22pccld 16780 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℕ0)
2423nn0cnd 12465 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℂ)
2521, 24mulcomd 11155 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (2 · (𝑃 pCnt (√‘𝐴))) = ((𝑃 pCnt (√‘𝐴)) · 2))
2613, 20, 253eqtr3rd 2773 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃 pCnt (√‘𝐴)) · 2) = (𝑃 pCnt 𝐴))
2726oveq2d 7369 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = (𝑃↑(𝑃 pCnt 𝐴)))
28 prmnn 16603 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
295, 28syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℕ)
3029nncnd 12162 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℂ)
31 2nn0 12419 . . . . . . . . . . . . 13 2 ∈ ℕ0
3231a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℕ0)
3330, 32, 23expmuld 14074 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3427, 33eqtr3d 2766 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3534fveq2d 6830 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)))
3629, 23nnexpcld 14170 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℕ)
3736nnrpd 12953 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ+)
3837rprege0d 12962 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))))
39 sqrtsq 15194 . . . . . . . . . 10 (((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4135, 40eqtrd 2764 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4241, 36eqeltrd 2828 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
4342iftrued 4486 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) = 1)
44 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
45 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
46 rpvmasum.a . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
47 rpvmasum2.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
48 rpvmasum2.d . . . . . . . 8 𝐷 = (Base‘𝐺)
49 rpvmasum2.1 . . . . . . . 8 1 = (0g𝐺)
50 dchrisum0f.f . . . . . . . 8 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
51 dchrisum0f.x . . . . . . . 8 (𝜑𝑋𝐷)
52 dchrisum0flb.r . . . . . . . 8 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
534, 16pccld 16780 . . . . . . . 8 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ0)
5444, 45, 46, 47, 48, 49, 50, 51, 52, 4, 53dchrisum0flblem1 27435 . . . . . . 7 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5554adantr 480 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5643, 55eqbrtrrd 5119 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
57 pcdvds 16794 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
584, 16, 57syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
594, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
6059, 53nnexpcld 14170 . . . . . . . . . . . . 13 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
61 nndivdvds 16190 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6216, 60, 61syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6358, 62mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
6463nnzd 12516 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6564adantr 480 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6616adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℕ)
6766nnrpd 12953 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ+)
6867rprege0d 12962 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6960adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
7069nnrpd 12953 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+)
71 sqrtdiv 15190 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
7268, 70, 71syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
73 nnz 12510 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℤ)
74 znq 12871 . . . . . . . . . . 11 (((√‘𝐴) ∈ ℤ ∧ (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7573, 42, 74syl2an2 686 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7672, 75eqeltrd 2828 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
77 zsqrtelqelz 16687 . . . . . . . . 9 (((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7865, 76, 77syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7963adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
8079nnrpd 12953 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ+)
8180sqrtgt0d 15338 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
82 elnnz 12499 . . . . . . . 8 ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ ↔ ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ ∧ 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
8378, 81, 82sylanbrc 583 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ)
8483iftrued 4486 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) = 1)
85 fveq2 6826 . . . . . . . . . . 11 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (√‘𝑦) = (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8685eleq1d 2813 . . . . . . . . . 10 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ))
8786ifbid 4502 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
88 fveq2 6826 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (𝐹𝑦) = (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8987, 88breq12d 5108 . . . . . . . 8 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
90 dchrisum0flb.4 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
91 nnuz 12796 . . . . . . . . . 10 ℕ = (ℤ‘1)
9263, 91eleqtrdi 2838 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1))
9316nnzd 12516 . . . . . . . . 9 (𝜑𝐴 ∈ ℤ)
9459nnred 12161 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
95 dchrisum0flb.3 . . . . . . . . . . . . 13 (𝜑𝑃𝐴)
96 pcelnn 16800 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
974, 16, 96syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
9895, 97mpbird 257 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ)
99 prmuz2 16625 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
100 eluz2gt1 12839 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
1014, 99, 1003syl 18 . . . . . . . . . . . 12 (𝜑 → 1 < 𝑃)
102 expgt1 14025 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ (𝑃 pCnt 𝐴) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
10394, 98, 101, 102syl3anc 1373 . . . . . . . . . . 11 (𝜑 → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
104 1red 11135 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
105 0lt1 11660 . . . . . . . . . . . . 13 0 < 1
106105a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
10760nnred 12161 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ)
10860nngt0d 12195 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑃↑(𝑃 pCnt 𝐴)))
10916nnred 12161 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
11016nngt0d 12195 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐴)
111 ltdiv2 12029 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ ∧ 0 < (𝑃↑(𝑃 pCnt 𝐴))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
112104, 106, 107, 108, 109, 110, 111syl222anc 1388 . . . . . . . . . . 11 (𝜑 → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
113103, 112mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1))
11417div1d 11910 . . . . . . . . . 10 (𝜑 → (𝐴 / 1) = 𝐴)
115113, 114breqtrd 5121 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴)
116 elfzo2 13583 . . . . . . . . 9 ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴) ↔ ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1) ∧ 𝐴 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴))
11792, 93, 115, 116syl3anbrc 1344 . . . . . . . 8 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴))
11889, 90, 117rspcdva 3580 . . . . . . 7 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
119118adantr 480 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
12084, 119eqbrtrrd 5119 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
121 1re 11134 . . . . . . . 8 1 ∈ ℝ
122 0le1 11661 . . . . . . . 8 0 ≤ 1
123121, 122pm3.2i 470 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
124123a1i 11 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 ∈ ℝ ∧ 0 ≤ 1))
12544, 45, 46, 47, 48, 49, 50, 51, 52dchrisum0ff 27434 . . . . . . . 8 (𝜑𝐹:ℕ⟶ℝ)
126125, 60ffvelcdmd 7023 . . . . . . 7 (𝜑 → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
127126adantr 480 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
128125, 63ffvelcdmd 7023 . . . . . . 7 (𝜑 → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
129128adantr 480 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
130 lemul12a 12000 . . . . . 6 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
131124, 127, 124, 129, 130syl22anc 838 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
13256, 120, 131mp2and 699 . . . 4 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1333, 132eqbrtrrid 5131 . . 3 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
134 0red 11137 . . . . . 6 (𝜑 → 0 ∈ ℝ)
135 0re 11136 . . . . . . . 8 0 ∈ ℝ
136121, 135ifcli 4526 . . . . . . 7 if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ
137136a1i 11 . . . . . 6 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ)
138 breq2 5099 . . . . . . . 8 (1 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
139 breq2 5099 . . . . . . . 8 (0 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
140 0le0 12247 . . . . . . . 8 0 ≤ 0
141138, 139, 122, 140keephyp 4550 . . . . . . 7 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)
142141a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0))
143134, 137, 126, 142, 54letrd 11291 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
144121, 135ifcli 4526 . . . . . . 7 if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ
145144a1i 11 . . . . . 6 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ)
146 breq2 5099 . . . . . . . 8 (1 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
147 breq2 5099 . . . . . . . 8 (0 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
148146, 147, 122, 140keephyp 4550 . . . . . . 7 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)
149148a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
150134, 145, 128, 149, 118letrd 11291 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
151126, 128, 143, 150mulge0d 11715 . . . 4 (𝜑 → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
152151adantr 480 . . 3 ((𝜑 ∧ ¬ (√‘𝐴) ∈ ℕ) → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1531, 2, 133, 152ifbothda 4517 . 2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
15460nncnd 12162 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℂ)
15560nnne0d 12196 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ≠ 0)
15617, 154, 155divcan2d 11920 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 𝐴)
157156fveq2d 6830 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = (𝐹𝐴))
158 pcndvds2 16798 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
1594, 16, 158syl2anc 584 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
160 coprm 16640 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ) → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
1614, 64, 160syl2anc 584 . . . . . 6 (𝜑 → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
162159, 161mpbid 232 . . . . 5 (𝜑 → (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
163 prmz 16604 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1644, 163syl 17 . . . . . 6 (𝜑𝑃 ∈ ℤ)
165 rpexp1i 16652 . . . . . 6 ((𝑃 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
166164, 64, 53, 165syl3anc 1373 . . . . 5 (𝜑 → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
167162, 166mpd 15 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
16844, 45, 46, 47, 48, 49, 50, 51, 60, 63, 167dchrisum0fmul 27433 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
169157, 168eqtr3d 2766 . 2 (𝜑 → (𝐹𝐴) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
170153, 169breqtrrd 5123 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3396  ifcif 4478   class class class wbr 5095  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033   < clt 11168  cle 11169   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  cq 12867  +crp 12911  ..^cfzo 13575  cexp 13986  csqrt 15158  Σcsu 15611  cdvds 16181   gcd cgcd 16423  cprime 16600   pCnt cpc 16766  Basecbs 17138  0gc0g 17361  ℤRHomczrh 21424  ℤ/nczn 21427  DChrcdchr 27159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-numer 16664  df-denom 16665  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-qus 17431  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-cntz 19214  df-od 19425  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-zring 21372  df-zrh 21428  df-zn 21431  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cxp 26482  df-dchr 27160
This theorem is referenced by:  dchrisum0flb  27437
  Copyright terms: Public domain W3C validator