MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem2 Structured version   Visualization version   GIF version

Theorem dchrisum0flblem2 26857
Description: Lemma for dchrisum0flb 26858. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.1 (𝜑𝐴 ∈ (ℤ‘2))
dchrisum0flb.2 (𝜑𝑃 ∈ ℙ)
dchrisum0flb.3 (𝜑𝑃𝐴)
dchrisum0flb.4 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
Assertion
Ref Expression
dchrisum0flblem2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑦, 1   𝑦,𝐹   𝑞,𝑏,𝑣,𝑦,𝐴   𝑁,𝑞,𝑦   𝑃,𝑏,𝑞,𝑣,𝑦   𝑦,𝑍   𝑦,𝐷   𝐿,𝑏,𝑣,𝑦   𝑋,𝑏,𝑣,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑦,𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flblem2
StepHypRef Expression
1 breq1 5108 . . 3 (1 = if((√‘𝐴) ∈ ℕ, 1, 0) → (1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
2 breq1 5108 . . 3 (0 = if((√‘𝐴) ∈ ℕ, 1, 0) → (0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
3 1t1e1 12315 . . . 4 (1 · 1) = 1
4 dchrisum0flb.2 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℙ)
54adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℙ)
6 nnq 12887 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℚ)
76adantl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℚ)
8 nnne0 12187 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ≠ 0)
98adantl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ≠ 0)
10 2z 12535 . . . . . . . . . . . . . . 15 2 ∈ ℤ
1110a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℤ)
12 pcexp 16731 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((√‘𝐴) ∈ ℚ ∧ (√‘𝐴) ≠ 0) ∧ 2 ∈ ℤ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
135, 7, 9, 11, 12syl121anc 1375 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
14 dchrisum0flb.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ (ℤ‘2))
15 eluz2nn 12809 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ)
1716nncnd 12169 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
1817adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℂ)
1918sqsqrtd 15324 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴)↑2) = 𝐴)
2019oveq2d 7373 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (𝑃 pCnt 𝐴))
21 2cnd 12231 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℂ)
22 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℕ)
235, 22pccld 16722 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℕ0)
2423nn0cnd 12475 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℂ)
2521, 24mulcomd 11176 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (2 · (𝑃 pCnt (√‘𝐴))) = ((𝑃 pCnt (√‘𝐴)) · 2))
2613, 20, 253eqtr3rd 2785 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃 pCnt (√‘𝐴)) · 2) = (𝑃 pCnt 𝐴))
2726oveq2d 7373 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = (𝑃↑(𝑃 pCnt 𝐴)))
28 prmnn 16550 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
295, 28syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℕ)
3029nncnd 12169 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℂ)
31 2nn0 12430 . . . . . . . . . . . . 13 2 ∈ ℕ0
3231a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℕ0)
3330, 32, 23expmuld 14054 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3427, 33eqtr3d 2778 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3534fveq2d 6846 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)))
3629, 23nnexpcld 14148 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℕ)
3736nnrpd 12955 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ+)
3837rprege0d 12964 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))))
39 sqrtsq 15154 . . . . . . . . . 10 (((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4135, 40eqtrd 2776 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4241, 36eqeltrd 2838 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
4342iftrued 4494 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) = 1)
44 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
45 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
46 rpvmasum.a . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
47 rpvmasum2.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
48 rpvmasum2.d . . . . . . . 8 𝐷 = (Base‘𝐺)
49 rpvmasum2.1 . . . . . . . 8 1 = (0g𝐺)
50 dchrisum0f.f . . . . . . . 8 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
51 dchrisum0f.x . . . . . . . 8 (𝜑𝑋𝐷)
52 dchrisum0flb.r . . . . . . . 8 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
534, 16pccld 16722 . . . . . . . 8 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ0)
5444, 45, 46, 47, 48, 49, 50, 51, 52, 4, 53dchrisum0flblem1 26856 . . . . . . 7 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5554adantr 481 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5643, 55eqbrtrrd 5129 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
57 pcdvds 16736 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
584, 16, 57syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
594, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
6059, 53nnexpcld 14148 . . . . . . . . . . . . 13 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
61 nndivdvds 16145 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6216, 60, 61syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6358, 62mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
6463nnzd 12526 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6564adantr 481 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6616adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℕ)
6766nnrpd 12955 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ+)
6867rprege0d 12964 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6960adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
7069nnrpd 12955 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+)
71 sqrtdiv 15150 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
7268, 70, 71syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
73 nnz 12520 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℤ)
74 znq 12877 . . . . . . . . . . 11 (((√‘𝐴) ∈ ℤ ∧ (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7573, 42, 74syl2an2 684 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7672, 75eqeltrd 2838 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
77 zsqrtelqelz 16633 . . . . . . . . 9 (((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7865, 76, 77syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7963adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
8079nnrpd 12955 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ+)
8180sqrtgt0d 15297 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
82 elnnz 12509 . . . . . . . 8 ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ ↔ ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ ∧ 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
8378, 81, 82sylanbrc 583 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ)
8483iftrued 4494 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) = 1)
85 fveq2 6842 . . . . . . . . . . 11 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (√‘𝑦) = (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8685eleq1d 2822 . . . . . . . . . 10 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ))
8786ifbid 4509 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
88 fveq2 6842 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (𝐹𝑦) = (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8987, 88breq12d 5118 . . . . . . . 8 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
90 dchrisum0flb.4 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
91 nnuz 12806 . . . . . . . . . 10 ℕ = (ℤ‘1)
9263, 91eleqtrdi 2848 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1))
9316nnzd 12526 . . . . . . . . 9 (𝜑𝐴 ∈ ℤ)
9459nnred 12168 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
95 dchrisum0flb.3 . . . . . . . . . . . . 13 (𝜑𝑃𝐴)
96 pcelnn 16742 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
974, 16, 96syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
9895, 97mpbird 256 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ)
99 prmuz2 16572 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
100 eluz2gt1 12845 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
1014, 99, 1003syl 18 . . . . . . . . . . . 12 (𝜑 → 1 < 𝑃)
102 expgt1 14006 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ (𝑃 pCnt 𝐴) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
10394, 98, 101, 102syl3anc 1371 . . . . . . . . . . 11 (𝜑 → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
104 1red 11156 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
105 0lt1 11677 . . . . . . . . . . . . 13 0 < 1
106105a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
10760nnred 12168 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ)
10860nngt0d 12202 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑃↑(𝑃 pCnt 𝐴)))
10916nnred 12168 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
11016nngt0d 12202 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐴)
111 ltdiv2 12041 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ ∧ 0 < (𝑃↑(𝑃 pCnt 𝐴))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
112104, 106, 107, 108, 109, 110, 111syl222anc 1386 . . . . . . . . . . 11 (𝜑 → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
113103, 112mpbid 231 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1))
11417div1d 11923 . . . . . . . . . 10 (𝜑 → (𝐴 / 1) = 𝐴)
115113, 114breqtrd 5131 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴)
116 elfzo2 13575 . . . . . . . . 9 ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴) ↔ ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1) ∧ 𝐴 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴))
11792, 93, 115, 116syl3anbrc 1343 . . . . . . . 8 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴))
11889, 90, 117rspcdva 3582 . . . . . . 7 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
119118adantr 481 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
12084, 119eqbrtrrd 5129 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
121 1re 11155 . . . . . . . 8 1 ∈ ℝ
122 0le1 11678 . . . . . . . 8 0 ≤ 1
123121, 122pm3.2i 471 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
124123a1i 11 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 ∈ ℝ ∧ 0 ≤ 1))
12544, 45, 46, 47, 48, 49, 50, 51, 52dchrisum0ff 26855 . . . . . . . 8 (𝜑𝐹:ℕ⟶ℝ)
126125, 60ffvelcdmd 7036 . . . . . . 7 (𝜑 → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
127126adantr 481 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
128125, 63ffvelcdmd 7036 . . . . . . 7 (𝜑 → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
129128adantr 481 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
130 lemul12a 12013 . . . . . 6 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
131124, 127, 124, 129, 130syl22anc 837 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
13256, 120, 131mp2and 697 . . . 4 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1333, 132eqbrtrrid 5141 . . 3 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
134 0red 11158 . . . . . 6 (𝜑 → 0 ∈ ℝ)
135 0re 11157 . . . . . . . 8 0 ∈ ℝ
136121, 135ifcli 4533 . . . . . . 7 if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ
137136a1i 11 . . . . . 6 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ)
138 breq2 5109 . . . . . . . 8 (1 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
139 breq2 5109 . . . . . . . 8 (0 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
140 0le0 12254 . . . . . . . 8 0 ≤ 0
141138, 139, 122, 140keephyp 4557 . . . . . . 7 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)
142141a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0))
143134, 137, 126, 142, 54letrd 11312 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
144121, 135ifcli 4533 . . . . . . 7 if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ
145144a1i 11 . . . . . 6 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ)
146 breq2 5109 . . . . . . . 8 (1 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
147 breq2 5109 . . . . . . . 8 (0 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
148146, 147, 122, 140keephyp 4557 . . . . . . 7 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)
149148a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
150134, 145, 128, 149, 118letrd 11312 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
151126, 128, 143, 150mulge0d 11732 . . . 4 (𝜑 → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
152151adantr 481 . . 3 ((𝜑 ∧ ¬ (√‘𝐴) ∈ ℕ) → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1531, 2, 133, 152ifbothda 4524 . 2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
15460nncnd 12169 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℂ)
15560nnne0d 12203 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ≠ 0)
15617, 154, 155divcan2d 11933 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 𝐴)
157156fveq2d 6846 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = (𝐹𝐴))
158 pcndvds2 16740 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
1594, 16, 158syl2anc 584 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
160 coprm 16587 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ) → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
1614, 64, 160syl2anc 584 . . . . . 6 (𝜑 → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
162159, 161mpbid 231 . . . . 5 (𝜑 → (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
163 prmz 16551 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1644, 163syl 17 . . . . . 6 (𝜑𝑃 ∈ ℤ)
165 rpexp1i 16599 . . . . . 6 ((𝑃 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
166164, 64, 53, 165syl3anc 1371 . . . . 5 (𝜑 → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
167162, 166mpd 15 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
16844, 45, 46, 47, 48, 49, 50, 51, 60, 63, 167dchrisum0fmul 26854 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
169157, 168eqtr3d 2778 . 2 (𝜑 → (𝐹𝐴) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
170153, 169breqtrrd 5133 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  ifcif 4486   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189  cle 11190   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  cq 12873  +crp 12915  ..^cfzo 13567  cexp 13967  csqrt 15118  Σcsu 15570  cdvds 16136   gcd cgcd 16374  cprime 16547   pCnt cpc 16708  Basecbs 17083  0gc0g 17321  ℤRHomczrh 20900  ℤ/nczn 20903  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-numer 16610  df-denom 16611  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-qus 17391  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-cntz 19097  df-od 19310  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-dchr 26581
This theorem is referenced by:  dchrisum0flb  26858
  Copyright terms: Public domain W3C validator