MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem2 Structured version   Visualization version   GIF version

Theorem dchrisum0flblem2 27535
Description: Lemma for dchrisum0flb 27536. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.) Replace reference to OLD theorem. (Revised by Wolf Lammen, 8-Sep-2020.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
dchrisum0f.f 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
dchrisum0f.x (𝜑𝑋𝐷)
dchrisum0flb.r (𝜑𝑋:(Base‘𝑍)⟶ℝ)
dchrisum0flb.1 (𝜑𝐴 ∈ (ℤ‘2))
dchrisum0flb.2 (𝜑𝑃 ∈ ℙ)
dchrisum0flb.3 (𝜑𝑃𝐴)
dchrisum0flb.4 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
Assertion
Ref Expression
dchrisum0flblem2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Distinct variable groups:   𝑦, 1   𝑦,𝐹   𝑞,𝑏,𝑣,𝑦,𝐴   𝑁,𝑞,𝑦   𝑃,𝑏,𝑞,𝑣,𝑦   𝑦,𝑍   𝑦,𝐷   𝐿,𝑏,𝑣,𝑦   𝑋,𝑏,𝑣,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑣,𝑞,𝑏)   𝐷(𝑣,𝑞,𝑏)   1 (𝑣,𝑞,𝑏)   𝐹(𝑣,𝑞,𝑏)   𝐺(𝑦,𝑣,𝑞,𝑏)   𝐿(𝑞)   𝑁(𝑣,𝑏)   𝑋(𝑞)   𝑍(𝑣,𝑞,𝑏)

Proof of Theorem dchrisum0flblem2
StepHypRef Expression
1 breq1 5148 . . 3 (1 = if((√‘𝐴) ∈ ℕ, 1, 0) → (1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
2 breq1 5148 . . 3 (0 = if((√‘𝐴) ∈ ℕ, 1, 0) → (0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
3 1t1e1 12420 . . . 4 (1 · 1) = 1
4 dchrisum0flb.2 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℙ)
54adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℙ)
6 nnq 12992 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℚ)
76adantl 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℚ)
8 nnne0 12292 . . . . . . . . . . . . . . 15 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ≠ 0)
98adantl 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ≠ 0)
10 2z 12640 . . . . . . . . . . . . . . 15 2 ∈ ℤ
1110a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℤ)
12 pcexp 16856 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((√‘𝐴) ∈ ℚ ∧ (√‘𝐴) ≠ 0) ∧ 2 ∈ ℤ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
135, 7, 9, 11, 12syl121anc 1372 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴))))
14 dchrisum0flb.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ (ℤ‘2))
15 eluz2nn 12914 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ℕ)
1716nncnd 12274 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
1817adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℂ)
1918sqsqrtd 15439 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴)↑2) = 𝐴)
2019oveq2d 7432 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (𝑃 pCnt 𝐴))
21 2cnd 12336 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℂ)
22 simpr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘𝐴) ∈ ℕ)
235, 22pccld 16847 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℕ0)
2423nn0cnd 12580 . . . . . . . . . . . . . 14 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈ ℂ)
2521, 24mulcomd 11276 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (2 · (𝑃 pCnt (√‘𝐴))) = ((𝑃 pCnt (√‘𝐴)) · 2))
2613, 20, 253eqtr3rd 2775 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃 pCnt (√‘𝐴)) · 2) = (𝑃 pCnt 𝐴))
2726oveq2d 7432 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = (𝑃↑(𝑃 pCnt 𝐴)))
28 prmnn 16670 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
295, 28syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℕ)
3029nncnd 12274 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈ ℂ)
31 2nn0 12535 . . . . . . . . . . . . 13 2 ∈ ℕ0
3231a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2 ∈ ℕ0)
3330, 32, 23expmuld 14162 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3427, 33eqtr3d 2768 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))
3534fveq2d 6897 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)))
3629, 23nnexpcld 14257 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℕ)
3736nnrpd 13062 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ+)
3837rprege0d 13071 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))))
39 sqrtsq 15269 . . . . . . . . . 10 (((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4135, 40eqtrd 2766 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) = (𝑃↑(𝑃 pCnt (√‘𝐴))))
4241, 36eqeltrd 2826 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
4342iftrued 4531 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) = 1)
44 rpvmasum.z . . . . . . . 8 𝑍 = (ℤ/nℤ‘𝑁)
45 rpvmasum.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
46 rpvmasum.a . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
47 rpvmasum2.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
48 rpvmasum2.d . . . . . . . 8 𝐷 = (Base‘𝐺)
49 rpvmasum2.1 . . . . . . . 8 1 = (0g𝐺)
50 dchrisum0f.f . . . . . . . 8 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞𝑏} (𝑋‘(𝐿𝑣)))
51 dchrisum0f.x . . . . . . . 8 (𝜑𝑋𝐷)
52 dchrisum0flb.r . . . . . . . 8 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
534, 16pccld 16847 . . . . . . . 8 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ0)
5444, 45, 46, 47, 48, 49, 50, 51, 52, 4, 53dchrisum0flblem1 27534 . . . . . . 7 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5554adantr 479 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
5643, 55eqbrtrrd 5169 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
57 pcdvds 16861 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
584, 16, 57syl2anc 582 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
594, 28syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℕ)
6059, 53nnexpcld 14257 . . . . . . . . . . . . 13 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
61 nndivdvds 16260 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6216, 60, 61syl2anc 582 . . . . . . . . . . . 12 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ))
6358, 62mpbid 231 . . . . . . . . . . 11 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
6463nnzd 12631 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6564adantr 479 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ)
6616adantr 479 . . . . . . . . . . . . 13 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℕ)
6766nnrpd 13062 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈ ℝ+)
6867rprege0d 13071 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6960adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
7069nnrpd 13062 . . . . . . . . . . 11 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+)
71 sqrtdiv 15265 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
7268, 70, 71syl2anc 582 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))))
73 nnz 12625 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℕ → (√‘𝐴) ∈ ℤ)
74 znq 12982 . . . . . . . . . . 11 (((√‘𝐴) ∈ ℤ ∧ (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7573, 42, 74syl2an2 684 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
7672, 75eqeltrd 2826 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ)
77 zsqrtelqelz 16755 . . . . . . . . 9 (((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7865, 76, 77syl2anc 582 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ)
7963adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)
8079nnrpd 13062 . . . . . . . . 9 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ+)
8180sqrtgt0d 15412 . . . . . . . 8 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
82 elnnz 12614 . . . . . . . 8 ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ ↔ ((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ ∧ 0 < (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
8378, 81, 82sylanbrc 581 . . . . . . 7 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ)
8483iftrued 4531 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) = 1)
85 fveq2 6893 . . . . . . . . . . 11 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (√‘𝑦) = (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8685eleq1d 2811 . . . . . . . . . 10 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → ((√‘𝑦) ∈ ℕ ↔ (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ))
8786ifbid 4546 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → if((√‘𝑦) ∈ ℕ, 1, 0) = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
88 fveq2 6893 . . . . . . . . 9 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (𝐹𝑦) = (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
8987, 88breq12d 5158 . . . . . . . 8 (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦) ↔ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
90 dchrisum0flb.4 . . . . . . . 8 (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹𝑦))
91 nnuz 12911 . . . . . . . . . 10 ℕ = (ℤ‘1)
9263, 91eleqtrdi 2836 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1))
9316nnzd 12631 . . . . . . . . 9 (𝜑𝐴 ∈ ℤ)
9459nnred 12273 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
95 dchrisum0flb.3 . . . . . . . . . . . . 13 (𝜑𝑃𝐴)
96 pcelnn 16867 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
974, 16, 96syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃𝐴))
9895, 97mpbird 256 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ)
99 prmuz2 16692 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
100 eluz2gt1 12950 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
1014, 99, 1003syl 18 . . . . . . . . . . . 12 (𝜑 → 1 < 𝑃)
102 expgt1 14114 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ (𝑃 pCnt 𝐴) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
10394, 98, 101, 102syl3anc 1368 . . . . . . . . . . 11 (𝜑 → 1 < (𝑃↑(𝑃 pCnt 𝐴)))
104 1red 11256 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
105 0lt1 11777 . . . . . . . . . . . . 13 0 < 1
106105a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
10760nnred 12273 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ)
10860nngt0d 12307 . . . . . . . . . . . 12 (𝜑 → 0 < (𝑃↑(𝑃 pCnt 𝐴)))
10916nnred 12273 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
11016nngt0d 12307 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐴)
111 ltdiv2 12146 . . . . . . . . . . . 12 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ ∧ 0 < (𝑃↑(𝑃 pCnt 𝐴))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
112104, 106, 107, 108, 109, 110, 111syl222anc 1383 . . . . . . . . . . 11 (𝜑 → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)))
113103, 112mpbid 231 . . . . . . . . . 10 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1))
11417div1d 12027 . . . . . . . . . 10 (𝜑 → (𝐴 / 1) = 𝐴)
115113, 114breqtrd 5171 . . . . . . . . 9 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴)
116 elfzo2 13683 . . . . . . . . 9 ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴) ↔ ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ‘1) ∧ 𝐴 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴))
11792, 93, 115, 116syl3anbrc 1340 . . . . . . . 8 (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴))
11889, 90, 117rspcdva 3608 . . . . . . 7 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
119118adantr 479 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
12084, 119eqbrtrrd 5169 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
121 1re 11255 . . . . . . . 8 1 ∈ ℝ
122 0le1 11778 . . . . . . . 8 0 ≤ 1
123121, 122pm3.2i 469 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
124123a1i 11 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 ∈ ℝ ∧ 0 ≤ 1))
12544, 45, 46, 47, 48, 49, 50, 51, 52dchrisum0ff 27533 . . . . . . . 8 (𝜑𝐹:ℕ⟶ℝ)
126125, 60ffvelcdmd 7091 . . . . . . 7 (𝜑 → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
127126adantr 479 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ)
128125, 63ffvelcdmd 7091 . . . . . . 7 (𝜑 → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
129128adantr 479 . . . . . 6 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)
130 lemul12a 12117 . . . . . 6 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
131124, 127, 124, 129, 130syl22anc 837 . . . . 5 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))))
13256, 120, 131mp2and 697 . . . 4 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1333, 132eqbrtrrid 5181 . . 3 ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
134 0red 11258 . . . . . 6 (𝜑 → 0 ∈ ℝ)
135 0re 11257 . . . . . . . 8 0 ∈ ℝ
136121, 135ifcli 4570 . . . . . . 7 if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ
137136a1i 11 . . . . . 6 (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈ ℝ)
138 breq2 5149 . . . . . . . 8 (1 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
139 breq2 5149 . . . . . . . 8 (0 = if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)))
140 0le0 12359 . . . . . . . 8 0 ≤ 0
141138, 139, 122, 140keephyp 4594 . . . . . . 7 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)
142141a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0))
143134, 137, 126, 142, 54letrd 11412 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))))
144121, 135ifcli 4570 . . . . . . 7 if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ
145144a1i 11 . . . . . 6 (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈ ℝ)
146 breq2 5149 . . . . . . . 8 (1 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 1 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
147 breq2 5149 . . . . . . . 8 (0 = if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 0 ↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)))
148146, 147, 122, 140keephyp 4594 . . . . . . 7 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)
149148a1i 11 . . . . . 6 (𝜑 → 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0))
150134, 145, 128, 149, 118letrd 11412 . . . . 5 (𝜑 → 0 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))
151126, 128, 143, 150mulge0d 11832 . . . 4 (𝜑 → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
152151adantr 479 . . 3 ((𝜑 ∧ ¬ (√‘𝐴) ∈ ℕ) → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
1531, 2, 133, 152ifbothda 4561 . 2 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
15460nncnd 12274 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℂ)
15560nnne0d 12308 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ≠ 0)
15617, 154, 155divcan2d 12037 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 𝐴)
157156fveq2d 6897 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = (𝐹𝐴))
158 pcndvds2 16865 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
1594, 16, 158syl2anc 582 . . . . . 6 (𝜑 → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))
160 coprm 16707 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ) → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
1614, 64, 160syl2anc 582 . . . . . 6 (𝜑 → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
162159, 161mpbid 231 . . . . 5 (𝜑 → (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
163 prmz 16671 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1644, 163syl 17 . . . . . 6 (𝜑𝑃 ∈ ℤ)
165 rpexp1i 16720 . . . . . 6 ((𝑃 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
166164, 64, 53, 165syl3anc 1368 . . . . 5 (𝜑 → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1))
167162, 166mpd 15 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)
16844, 45, 46, 47, 48, 49, 50, 51, 60, 63, 167dchrisum0fmul 27532 . . 3 (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
169157, 168eqtr3d 2768 . 2 (𝜑 → (𝐹𝐴) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))
170153, 169breqtrrd 5173 1 (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wral 3051  {crab 3419  ifcif 4523   class class class wbr 5145  cmpt 5228  wf 6542  cfv 6546  (class class class)co 7416  cc 11147  cr 11148  0cc0 11149  1c1 11150   · cmul 11154   < clt 11289  cle 11290   / cdiv 11912  cn 12258  2c2 12313  0cn0 12518  cz 12604  cuz 12868  cq 12978  +crp 13022  ..^cfzo 13675  cexp 14075  csqrt 15233  Σcsu 15685  cdvds 16251   gcd cgcd 16489  cprime 16667   pCnt cpc 16833  Basecbs 17208  0gc0g 17449  ℤRHomczrh 21485  ℤ/nczn 21488  DChrcdchr 27258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228  ax-mulf 11229
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-disj 5111  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8726  df-ec 8728  df-qs 8732  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-fi 9447  df-sup 9478  df-inf 9479  df-oi 9546  df-card 9975  df-acn 9978  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-q 12979  df-rp 13023  df-xneg 13140  df-xadd 13141  df-xmul 13142  df-ioo 13376  df-ioc 13377  df-ico 13378  df-icc 13379  df-fz 13533  df-fzo 13676  df-fl 13806  df-mod 13884  df-seq 14016  df-exp 14076  df-fac 14286  df-bc 14315  df-hash 14343  df-shft 15067  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-limsup 15468  df-clim 15485  df-rlim 15486  df-sum 15686  df-ef 16064  df-sin 16066  df-cos 16067  df-pi 16069  df-dvds 16252  df-gcd 16490  df-prm 16668  df-numer 16732  df-denom 16733  df-pc 16834  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-rest 17432  df-topn 17433  df-0g 17451  df-gsum 17452  df-topgen 17453  df-pt 17454  df-prds 17457  df-xrs 17512  df-qtop 17517  df-imas 17518  df-qus 17519  df-xps 17520  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-nsg 19114  df-eqg 19115  df-ghm 19203  df-cntz 19307  df-od 19522  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-cring 20215  df-oppr 20312  df-dvdsr 20335  df-unit 20336  df-invr 20366  df-dvr 20379  df-rhm 20450  df-subrng 20524  df-subrg 20549  df-drng 20705  df-lmod 20834  df-lss 20905  df-lsp 20945  df-sra 21147  df-rgmod 21148  df-lidl 21193  df-rsp 21194  df-2idl 21235  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334  df-mopn 21335  df-fbas 21336  df-fg 21337  df-cnfld 21340  df-zring 21433  df-zrh 21489  df-zn 21492  df-top 22884  df-topon 22901  df-topsp 22923  df-bases 22937  df-cld 23011  df-ntr 23012  df-cls 23013  df-nei 23090  df-lp 23128  df-perf 23129  df-cn 23219  df-cnp 23220  df-haus 23307  df-tx 23554  df-hmeo 23747  df-fil 23838  df-fm 23930  df-flim 23931  df-flf 23932  df-xms 24314  df-ms 24315  df-tms 24316  df-cncf 24886  df-limc 25883  df-dv 25884  df-log 26580  df-cxp 26581  df-dchr 27259
This theorem is referenced by:  dchrisum0flb  27536
  Copyright terms: Public domain W3C validator