Proof of Theorem dchrisum0flblem2
Step | Hyp | Ref
| Expression |
1 | | breq1 5077 |
. . 3
⊢ (1 =
if((√‘𝐴) ∈
ℕ, 1, 0) → (1 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤
((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))) |
2 | | breq1 5077 |
. . 3
⊢ (0 =
if((√‘𝐴) ∈
ℕ, 1, 0) → (0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) ↔ if((√‘𝐴) ∈ ℕ, 1, 0) ≤
((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))) |
3 | | 1t1e1 12135 |
. . . 4
⊢ (1
· 1) = 1 |
4 | | dchrisum0flb.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈ ℙ) |
5 | 4 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈
ℙ) |
6 | | nnq 12702 |
. . . . . . . . . . . . . . 15
⊢
((√‘𝐴)
∈ ℕ → (√‘𝐴) ∈ ℚ) |
7 | 6 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘𝐴) ∈
ℚ) |
8 | | nnne0 12007 |
. . . . . . . . . . . . . . 15
⊢
((√‘𝐴)
∈ ℕ → (√‘𝐴) ≠ 0) |
9 | 8 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘𝐴) ≠
0) |
10 | | 2z 12352 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℤ |
11 | 10 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2
∈ ℤ) |
12 | | pcexp 16560 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧
((√‘𝐴) ∈
ℚ ∧ (√‘𝐴) ≠ 0) ∧ 2 ∈ ℤ) →
(𝑃 pCnt
((√‘𝐴)↑2))
= (2 · (𝑃 pCnt
(√‘𝐴)))) |
13 | 5, 7, 9, 11, 12 | syl121anc 1374 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (2 · (𝑃 pCnt (√‘𝐴)))) |
14 | | dchrisum0flb.1 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈
(ℤ≥‘2)) |
15 | | eluz2nn 12624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ ℕ) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ ℕ) |
17 | 16 | nncnd 11989 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℂ) |
18 | 17 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈
ℂ) |
19 | 18 | sqsqrtd 15151 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
((√‘𝐴)↑2)
= 𝐴) |
20 | 19 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt ((√‘𝐴)↑2)) = (𝑃 pCnt 𝐴)) |
21 | | 2cnd 12051 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2
∈ ℂ) |
22 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘𝐴) ∈
ℕ) |
23 | 5, 22 | pccld 16551 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈
ℕ0) |
24 | 23 | nn0cnd 12295 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃 pCnt (√‘𝐴)) ∈
ℂ) |
25 | 21, 24 | mulcomd 10996 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (2
· (𝑃 pCnt
(√‘𝐴))) =
((𝑃 pCnt
(√‘𝐴)) ·
2)) |
26 | 13, 20, 25 | 3eqtr3rd 2787 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃 pCnt (√‘𝐴)) · 2) = (𝑃 pCnt 𝐴)) |
27 | 26 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = (𝑃↑(𝑃 pCnt 𝐴))) |
28 | | prmnn 16379 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
29 | 5, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈
ℕ) |
30 | 29 | nncnd 11989 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝑃 ∈
ℂ) |
31 | | 2nn0 12250 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ0 |
32 | 31 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 2
∈ ℕ0) |
33 | 30, 32, 23 | expmuld 13867 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑((𝑃 pCnt (√‘𝐴)) · 2)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) |
34 | 27, 33 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) = ((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) |
35 | 34 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘(𝑃↑(𝑃 pCnt 𝐴))) = (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2))) |
36 | 29, 23 | nnexpcld 13960 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℕ) |
37 | 36 | nnrpd 12770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt (√‘𝐴))) ∈
ℝ+) |
38 | 37 | rprege0d 12779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴))))) |
39 | | sqrtsq 14981 |
. . . . . . . . . 10
⊢ (((𝑃↑(𝑃 pCnt (√‘𝐴))) ∈ ℝ ∧ 0 ≤ (𝑃↑(𝑃 pCnt (√‘𝐴)))) → (√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴)))) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘((𝑃↑(𝑃 pCnt (√‘𝐴)))↑2)) = (𝑃↑(𝑃 pCnt (√‘𝐴)))) |
41 | 35, 40 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘(𝑃↑(𝑃 pCnt 𝐴))) = (𝑃↑(𝑃 pCnt (√‘𝐴)))) |
42 | 41, 36 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ) |
43 | 42 | iftrued 4467 |
. . . . . 6
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) =
1) |
44 | | rpvmasum.z |
. . . . . . . 8
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
45 | | rpvmasum.l |
. . . . . . . 8
⊢ 𝐿 = (ℤRHom‘𝑍) |
46 | | rpvmasum.a |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
47 | | rpvmasum2.g |
. . . . . . . 8
⊢ 𝐺 = (DChr‘𝑁) |
48 | | rpvmasum2.d |
. . . . . . . 8
⊢ 𝐷 = (Base‘𝐺) |
49 | | rpvmasum2.1 |
. . . . . . . 8
⊢ 1 =
(0g‘𝐺) |
50 | | dchrisum0f.f |
. . . . . . . 8
⊢ 𝐹 = (𝑏 ∈ ℕ ↦ Σ𝑣 ∈ {𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏} (𝑋‘(𝐿‘𝑣))) |
51 | | dchrisum0f.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
52 | | dchrisum0flb.r |
. . . . . . . 8
⊢ (𝜑 → 𝑋:(Base‘𝑍)⟶ℝ) |
53 | 4, 16 | pccld 16551 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 pCnt 𝐴) ∈
ℕ0) |
54 | 44, 45, 46, 47, 48, 49, 50, 51, 52, 4, 53 | dchrisum0flblem1 26656 |
. . . . . . 7
⊢ (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴)))) |
55 | 54 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴)))) |
56 | 43, 55 | eqbrtrrd 5098 |
. . . . 5
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤
(𝐹‘(𝑃↑(𝑃 pCnt 𝐴)))) |
57 | | pcdvds 16565 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) |
58 | 4, 16, 57 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) |
59 | 4, 28 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ ℕ) |
60 | 59, 53 | nnexpcld 13960 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) |
61 | | nndivdvds 15972 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)) |
62 | 16, 60, 61 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴 ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ)) |
63 | 58, 62 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ) |
64 | 63 | nnzd 12425 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ) |
65 | 64 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ) |
66 | 16 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈
ℕ) |
67 | 66 | nnrpd 12770 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 𝐴 ∈
ℝ+) |
68 | 67 | rprege0d 12779 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤
𝐴)) |
69 | 60 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) |
70 | 69 | nnrpd 12770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈
ℝ+) |
71 | | sqrtdiv 14977 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ+) →
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴))))) |
72 | 68, 70, 71 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = ((√‘𝐴) / (√‘(𝑃↑(𝑃 pCnt 𝐴))))) |
73 | | nnz 12342 |
. . . . . . . . . . 11
⊢
((√‘𝐴)
∈ ℕ → (√‘𝐴) ∈ ℤ) |
74 | | znq 12692 |
. . . . . . . . . . 11
⊢
(((√‘𝐴)
∈ ℤ ∧ (√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ) →
((√‘𝐴) /
(√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ) |
75 | 73, 42, 74 | syl2an2 683 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
((√‘𝐴) /
(√‘(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ) |
76 | 72, 75 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ) |
77 | | zsqrtelqelz 16462 |
. . . . . . . . 9
⊢ (((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℚ) →
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ) |
78 | 65, 76, 77 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ) |
79 | 63 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ) |
80 | 79 | nnrpd 12770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈
ℝ+) |
81 | 80 | sqrtgt0d 15124 |
. . . . . . . 8
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 0 <
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) |
82 | | elnnz 12329 |
. . . . . . . 8
⊢
((√‘(𝐴 /
(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ ↔
((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℤ ∧ 0 <
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))) |
83 | 78, 81, 82 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ) |
84 | 83 | iftrued 4467 |
. . . . . 6
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
if((√‘(𝐴 /
(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) =
1) |
85 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (√‘𝑦) = (√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) |
86 | 85 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → ((√‘𝑦) ∈ ℕ ↔
(√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ)) |
87 | 86 | ifbid 4482 |
. . . . . . . . 9
⊢ (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → if((√‘𝑦) ∈ ℕ, 1, 0) =
if((√‘(𝐴 /
(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)) |
88 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (𝐹‘𝑦) = (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) |
89 | 87, 88 | breq12d 5087 |
. . . . . . . 8
⊢ (𝑦 = (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) → (if((√‘𝑦) ∈ ℕ, 1, 0) ≤
(𝐹‘𝑦) ↔ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))) |
90 | | dchrisum0flb.4 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ (1..^𝐴)if((√‘𝑦) ∈ ℕ, 1, 0) ≤ (𝐹‘𝑦)) |
91 | | nnuz 12621 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
92 | 63, 91 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈
(ℤ≥‘1)) |
93 | 16 | nnzd 12425 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℤ) |
94 | 59 | nnred 11988 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℝ) |
95 | | dchrisum0flb.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∥ 𝐴) |
96 | | pcelnn 16571 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃 ∥ 𝐴)) |
97 | 4, 16, 96 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑃 pCnt 𝐴) ∈ ℕ ↔ 𝑃 ∥ 𝐴)) |
98 | 95, 97 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 pCnt 𝐴) ∈ ℕ) |
99 | | prmuz2 16401 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
100 | | eluz2gt1 12660 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈
(ℤ≥‘2) → 1 < 𝑃) |
101 | 4, 99, 100 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 < 𝑃) |
102 | | expgt1 13821 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℝ ∧ (𝑃 pCnt 𝐴) ∈ ℕ ∧ 1 < 𝑃) → 1 < (𝑃↑(𝑃 pCnt 𝐴))) |
103 | 94, 98, 101, 102 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 < (𝑃↑(𝑃 pCnt 𝐴))) |
104 | | 1red 10976 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ) |
105 | | 0lt1 11497 |
. . . . . . . . . . . . 13
⊢ 0 <
1 |
106 | 105 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 1) |
107 | 60 | nnred 11988 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ) |
108 | 60 | nngt0d 12022 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < (𝑃↑(𝑃 pCnt 𝐴))) |
109 | 16 | nnred 11988 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℝ) |
110 | 16 | nngt0d 12022 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝐴) |
111 | | ltdiv2 11861 |
. . . . . . . . . . . 12
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℝ ∧ 0 < (𝑃↑(𝑃 pCnt 𝐴))) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1))) |
112 | 104, 106,
107, 108, 109, 110, 111 | syl222anc 1385 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 < (𝑃↑(𝑃 pCnt 𝐴)) ↔ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1))) |
113 | 103, 112 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < (𝐴 / 1)) |
114 | 17 | div1d 11743 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 / 1) = 𝐴) |
115 | 113, 114 | breqtrd 5100 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴) |
116 | | elfzo2 13390 |
. . . . . . . . 9
⊢ ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴) ↔ ((𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (ℤ≥‘1)
∧ 𝐴 ∈ ℤ
∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) < 𝐴)) |
117 | 92, 93, 115, 116 | syl3anbrc 1342 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ (1..^𝐴)) |
118 | 89, 90, 117 | rspcdva 3562 |
. . . . . . 7
⊢ (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) |
119 | 118 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) →
if((√‘(𝐴 /
(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) |
120 | 84, 119 | eqbrtrrd 5098 |
. . . . 5
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤
(𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) |
121 | | 1re 10975 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
122 | | 0le1 11498 |
. . . . . . . 8
⊢ 0 ≤
1 |
123 | 121, 122 | pm3.2i 471 |
. . . . . . 7
⊢ (1 ∈
ℝ ∧ 0 ≤ 1) |
124 | 123 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1
∈ ℝ ∧ 0 ≤ 1)) |
125 | 44, 45, 46, 47, 48, 49, 50, 51, 52 | dchrisum0ff 26655 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
126 | 125, 60 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ) |
127 | 126 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ) |
128 | 125, 63 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ) |
129 | 128 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ) |
130 | | lemul12a 11833 |
. . . . . 6
⊢ ((((1
∈ ℝ ∧ 0 ≤ 1) ∧ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℝ) ∧ ((1 ∈ ℝ
∧ 0 ≤ 1) ∧ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℝ)) → ((1 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))) |
131 | 124, 127,
124, 129, 130 | syl22anc 836 |
. . . . 5
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → ((1
≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) ∧ 1 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) → (1 · 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))))) |
132 | 56, 120, 131 | mp2and 696 |
. . . 4
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → (1
· 1) ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))) |
133 | 3, 132 | eqbrtrrid 5110 |
. . 3
⊢ ((𝜑 ∧ (√‘𝐴) ∈ ℕ) → 1 ≤
((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))) |
134 | | 0red 10978 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
135 | | 0re 10977 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
136 | 121, 135 | ifcli 4506 |
. . . . . . 7
⊢
if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈
ℝ |
137 | 136 | a1i 11 |
. . . . . 6
⊢ (𝜑 → if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) ∈
ℝ) |
138 | | breq2 5078 |
. . . . . . . 8
⊢ (1 =
if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 1
↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0))) |
139 | | breq2 5078 |
. . . . . . . 8
⊢ (0 =
if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) → (0 ≤ 0
↔ 0 ≤ if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0))) |
140 | | 0le0 12074 |
. . . . . . . 8
⊢ 0 ≤
0 |
141 | 138, 139,
122, 140 | keephyp 4530 |
. . . . . . 7
⊢ 0 ≤
if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0) |
142 | 141 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ≤
if((√‘(𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ, 1, 0)) |
143 | 134, 137,
126, 142, 54 | letrd 11132 |
. . . . 5
⊢ (𝜑 → 0 ≤ (𝐹‘(𝑃↑(𝑃 pCnt 𝐴)))) |
144 | 121, 135 | ifcli 4506 |
. . . . . . 7
⊢
if((√‘(𝐴
/ (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈
ℝ |
145 | 144 | a1i 11 |
. . . . . 6
⊢ (𝜑 → if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) ∈
ℝ) |
146 | | breq2 5078 |
. . . . . . . 8
⊢ (1 =
if((√‘(𝐴 /
(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 1
↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1,
0))) |
147 | | breq2 5078 |
. . . . . . . 8
⊢ (0 =
if((√‘(𝐴 /
(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) → (0 ≤ 0
↔ 0 ≤ if((√‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1,
0))) |
148 | 146, 147,
122, 140 | keephyp 4530 |
. . . . . . 7
⊢ 0 ≤
if((√‘(𝐴 /
(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0) |
149 | 148 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ≤
if((√‘(𝐴 /
(𝑃↑(𝑃 pCnt 𝐴)))) ∈ ℕ, 1, 0)) |
150 | 134, 145,
128, 149, 118 | letrd 11132 |
. . . . 5
⊢ (𝜑 → 0 ≤ (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) |
151 | 126, 128,
143, 150 | mulge0d 11552 |
. . . 4
⊢ (𝜑 → 0 ≤ ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))) |
152 | 151 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ (√‘𝐴) ∈ ℕ) → 0 ≤
((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))) |
153 | 1, 2, 133, 152 | ifbothda 4497 |
. 2
⊢ (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤
((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))) |
154 | 60 | nncnd 11989 |
. . . . 5
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℂ) |
155 | 60 | nnne0d 12023 |
. . . . 5
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝐴)) ≠ 0) |
156 | 17, 154, 155 | divcan2d 11753 |
. . . 4
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 𝐴) |
157 | 156 | fveq2d 6778 |
. . 3
⊢ (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = (𝐹‘𝐴)) |
158 | | pcndvds2 16569 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ¬
𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) |
159 | 4, 16, 158 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) |
160 | | coprm 16416 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ) → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)) |
161 | 4, 64, 160 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑃 ∥ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ↔ (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)) |
162 | 159, 161 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1) |
163 | | prmz 16380 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
164 | 4, 163 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℤ) |
165 | | rpexp1i 16428 |
. . . . . 6
⊢ ((𝑃 ∈ ℤ ∧ (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)) |
166 | 164, 64, 53, 165 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝑃 gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1)) |
167 | 162, 166 | mpd 15 |
. . . 4
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐴)) gcd (𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))) = 1) |
168 | 44, 45, 46, 47, 48, 49, 50, 51, 60, 63, 167 | dchrisum0fmul 26654 |
. . 3
⊢ (𝜑 → (𝐹‘((𝑃↑(𝑃 pCnt 𝐴)) · (𝐴 / (𝑃↑(𝑃 pCnt 𝐴))))) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))) |
169 | 157, 168 | eqtr3d 2780 |
. 2
⊢ (𝜑 → (𝐹‘𝐴) = ((𝐹‘(𝑃↑(𝑃 pCnt 𝐴))) · (𝐹‘(𝐴 / (𝑃↑(𝑃 pCnt 𝐴)))))) |
170 | 153, 169 | breqtrrd 5102 |
1
⊢ (𝜑 → if((√‘𝐴) ∈ ℕ, 1, 0) ≤
(𝐹‘𝐴)) |