Step | Hyp | Ref
| Expression |
1 | | simp33 1212 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β π β€ π) |
2 | | simp11l 1285 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β πΎ β HL) |
3 | 2 | hllatd 37855 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β πΎ β Lat) |
4 | | simp21 1207 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β π β π΅) |
5 | | simp22 1208 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β π β π΅) |
6 | | simp11r 1286 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β π β π») |
7 | | cdleme32.b |
. . . . . . 7
β’ π΅ = (BaseβπΎ) |
8 | | cdleme32.h |
. . . . . . 7
β’ π» = (LHypβπΎ) |
9 | 7, 8 | lhpbase 38490 |
. . . . . 6
β’ (π β π» β π β π΅) |
10 | 6, 9 | syl 17 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β π β π΅) |
11 | | cdleme32.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
12 | | cdleme32.m |
. . . . . 6
β’ β§ =
(meetβπΎ) |
13 | 7, 11, 12 | latmlem1 18365 |
. . . . 5
β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β€ π β (π β§ π) β€ (π β§ π))) |
14 | 3, 4, 5, 10, 13 | syl13anc 1373 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β€ π β (π β§ π) β€ (π β§ π))) |
15 | 1, 14 | mpd 15 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β§ π) β€ (π β§ π)) |
16 | 7, 12 | latmcl 18336 |
. . . . 5
β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β§ π) β π΅) |
17 | 3, 4, 10, 16 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β§ π) β π΅) |
18 | 7, 12 | latmcl 18336 |
. . . . 5
β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (π β§ π) β π΅) |
19 | 3, 5, 10, 18 | syl3anc 1372 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β§ π) β π΅) |
20 | | simp12 1205 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β π΄ β§ Β¬ π β€ π)) |
21 | | simp13 1206 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β π΄ β§ Β¬ π β€ π)) |
22 | | simp31 1210 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β π΄ β§ Β¬ π β€ π)) |
23 | | simp23l 1295 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β π β π) |
24 | | cdleme32.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
25 | | cdleme32.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
26 | | cdleme32.u |
. . . . . 6
β’ π = ((π β¨ π) β§ π) |
27 | | cdleme32.c |
. . . . . 6
β’ πΆ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
28 | | cdleme32.d |
. . . . . 6
β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
29 | | cdleme32.e |
. . . . . 6
β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) |
30 | | cdleme32.i |
. . . . . 6
β’ πΌ = (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)) |
31 | | cdleme32.n |
. . . . . 6
β’ π = if(π β€ (π β¨ π), πΌ, πΆ) |
32 | 7, 11, 24, 12, 25, 8, 26, 27, 28, 29, 30, 31 | cdleme27cl 38858 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β π)) β π β π΅) |
33 | 2, 6, 20, 21, 22, 23, 32 | syl222anc 1387 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β π β π΅) |
34 | 7, 11, 24 | latjlej2 18350 |
. . . 4
β’ ((πΎ β Lat β§ ((π β§ π) β π΅ β§ (π β§ π) β π΅ β§ π β π΅)) β ((π β§ π) β€ (π β§ π) β (π β¨ (π β§ π)) β€ (π β¨ (π β§ π)))) |
35 | 3, 17, 19, 33, 34 | syl13anc 1373 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β ((π β§ π) β€ (π β§ π) β (π β¨ (π β§ π)) β€ (π β¨ (π β§ π)))) |
36 | 15, 35 | mpd 15 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β¨ (π β§ π)) β€ (π β¨ (π β§ π))) |
37 | | simp1 1137 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
38 | | simp23 1209 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β π β§ Β¬ π β€ π)) |
39 | | simp32 1211 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (π β¨ (π β§ π)) = π) |
40 | | cdleme32.o |
. . . 4
β’ π = (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (π β¨ (π₯ β§ π)))) |
41 | | cdleme32.f |
. . . 4
β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), π, π₯)) |
42 | 7, 11, 24, 12, 25, 8, 26, 27, 28, 29, 30, 31, 40, 41 | cdleme32a 38933 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β (πΉβπ) = (π β¨ (π β§ π))) |
43 | 37, 4, 38, 22, 39, 42 | syl122anc 1380 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (πΉβπ) = (π β¨ (π β§ π))) |
44 | 7, 11, 24, 12, 25, 8, 26, 27, 28, 29, 30, 31, 40, 41 | cdleme32b 38934 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (πΉβπ) = (π β¨ (π β§ π))) |
45 | 36, 43, 44 | 3brtr4d 5142 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ π β π΅ β§ (π β π β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π β§ π β€ π)) β (πΉβπ) β€ (πΉβπ)) |