![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divdenle | Structured version Visualization version GIF version |
Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
divdenle | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divnumden 16671 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))) | |
2 | 1 | simprd 497 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))) |
3 | simpl 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ) | |
4 | nnz 12566 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
5 | 4 | adantl 483 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ) |
6 | nnne0 12233 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
7 | 6 | neneqd 2946 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → ¬ 𝐵 = 0) |
8 | 7 | adantl 483 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ 𝐵 = 0) |
9 | 8 | intnand 490 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
10 | gcdn0cl 16430 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) | |
11 | 3, 5, 9, 10 | syl21anc 837 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
12 | 11 | nnge1d 12247 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ≤ (𝐴 gcd 𝐵)) |
13 | 1red 11202 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ∈ ℝ) | |
14 | 0lt1 11723 | . . . . . 6 ⊢ 0 < 1 | |
15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 1) |
16 | 11 | nnred 12214 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ) |
17 | 11 | nngt0d 12248 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 gcd 𝐵)) |
18 | nnre 12206 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
19 | 18 | adantl 483 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
20 | nngt0 12230 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
21 | 20 | adantl 483 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
22 | lediv2 12091 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1))) | |
23 | 13, 15, 16, 17, 19, 21, 22 | syl222anc 1387 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1))) |
24 | 12, 23 | mpbid 231 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1)) |
25 | nncn 12207 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
26 | 25 | adantl 483 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ) |
27 | 26 | div1d 11969 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / 1) = 𝐵) |
28 | 24, 27 | breqtrd 5170 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ 𝐵) |
29 | 2, 28 | eqbrtrd 5166 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5144 ‘cfv 6535 (class class class)co 7396 ℂcc 11095 ℝcr 11096 0cc0 11097 1c1 11098 < clt 11235 ≤ cle 11236 / cdiv 11858 ℕcn 12199 ℤcz 12545 gcd cgcd 16422 numercnumer 16656 denomcdenom 16657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-sup 9424 df-inf 9425 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 df-nn 12200 df-2 12262 df-3 12263 df-n0 12460 df-z 12546 df-uz 12810 df-q 12920 df-rp 12962 df-fl 13744 df-mod 13822 df-seq 13954 df-exp 14015 df-cj 15033 df-re 15034 df-im 15035 df-sqrt 15169 df-abs 15170 df-dvds 16185 df-gcd 16423 df-numer 16658 df-denom 16659 |
This theorem is referenced by: qden1elz 16680 irrapxlem5 41435 |
Copyright terms: Public domain | W3C validator |