Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divdenle | Structured version Visualization version GIF version |
Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
divdenle | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divnumden 16200 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))) | |
2 | 1 | simprd 499 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))) |
3 | simpl 486 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ) | |
4 | nnz 12097 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
5 | 4 | adantl 485 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ) |
6 | nnne0 11762 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
7 | 6 | neneqd 2940 | . . . . . . . 8 ⊢ (𝐵 ∈ ℕ → ¬ 𝐵 = 0) |
8 | 7 | adantl 485 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ 𝐵 = 0) |
9 | 8 | intnand 492 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
10 | gcdn0cl 15957 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) | |
11 | 3, 5, 9, 10 | syl21anc 837 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
12 | 11 | nnge1d 11776 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ≤ (𝐴 gcd 𝐵)) |
13 | 1red 10732 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ∈ ℝ) | |
14 | 0lt1 11252 | . . . . . 6 ⊢ 0 < 1 | |
15 | 14 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 1) |
16 | 11 | nnred 11743 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ) |
17 | 11 | nngt0d 11777 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 gcd 𝐵)) |
18 | nnre 11735 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
19 | 18 | adantl 485 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
20 | nngt0 11759 | . . . . . 6 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
21 | 20 | adantl 485 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
22 | lediv2 11620 | . . . . 5 ⊢ (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1))) | |
23 | 13, 15, 16, 17, 19, 21, 22 | syl222anc 1387 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1))) |
24 | 12, 23 | mpbid 235 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1)) |
25 | nncn 11736 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
26 | 25 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ) |
27 | 26 | div1d 11498 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / 1) = 𝐵) |
28 | 24, 27 | breqtrd 5066 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ 𝐵) |
29 | 2, 28 | eqbrtrd 5062 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 class class class wbr 5040 ‘cfv 6349 (class class class)co 7182 ℂcc 10625 ℝcr 10626 0cc0 10627 1c1 10628 < clt 10765 ≤ cle 10766 / cdiv 11387 ℕcn 11728 ℤcz 12074 gcd cgcd 15949 numercnumer 16185 denomcdenom 16186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 ax-pre-sup 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-sup 8991 df-inf 8992 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-div 11388 df-nn 11729 df-2 11791 df-3 11792 df-n0 11989 df-z 12075 df-uz 12337 df-q 12443 df-rp 12485 df-fl 13265 df-mod 13341 df-seq 13473 df-exp 13534 df-cj 14560 df-re 14561 df-im 14562 df-sqrt 14696 df-abs 14697 df-dvds 15712 df-gcd 15950 df-numer 16187 df-denom 16188 |
This theorem is referenced by: qden1elz 16209 irrapxlem5 40260 |
Copyright terms: Public domain | W3C validator |