MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdenle Structured version   Visualization version   GIF version

Theorem divdenle 16768
Description: Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divdenle ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵)

Proof of Theorem divdenle
StepHypRef Expression
1 divnumden 16767 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))
21simprd 495 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))
3 simpl 482 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
4 nnz 12609 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
54adantl 481 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
6 nnne0 12274 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
76neneqd 2937 . . . . . . . 8 (𝐵 ∈ ℕ → ¬ 𝐵 = 0)
87adantl 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ 𝐵 = 0)
98intnand 488 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
10 gcdn0cl 16521 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
113, 5, 9, 10syl21anc 837 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
1211nnge1d 12288 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ≤ (𝐴 gcd 𝐵))
13 1red 11236 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 1 ∈ ℝ)
14 0lt1 11759 . . . . . 6 0 < 1
1514a1i 11 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 1)
1611nnred 12255 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ)
1711nngt0d 12289 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 gcd 𝐵))
18 nnre 12247 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
1918adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
20 nngt0 12271 . . . . . 6 (𝐵 ∈ ℕ → 0 < 𝐵)
2120adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
22 lediv2 12132 . . . . 5 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐴 gcd 𝐵) ∈ ℝ ∧ 0 < (𝐴 gcd 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1)))
2313, 15, 16, 17, 19, 21, 22syl222anc 1388 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (1 ≤ (𝐴 gcd 𝐵) ↔ (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1)))
2412, 23mpbid 232 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ (𝐵 / 1))
25 nncn 12248 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
2625adantl 481 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
2726div1d 12009 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / 1) = 𝐵)
2824, 27breqtrd 5145 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ≤ 𝐵)
292, 28eqbrtrd 5141 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   < clt 11269  cle 11270   / cdiv 11894  cn 12240  cz 12588   gcd cgcd 16513  numercnumer 16752  denomcdenom 16753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-numer 16754  df-denom 16755
This theorem is referenced by:  qden1elz  16776  irrapxlem5  42849
  Copyright terms: Public domain W3C validator