Proof of Theorem basellem1
Step | Hyp | Ref
| Expression |
1 | | elfznn 13214 |
. . . . . 6
⊢ (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℕ) |
2 | 1 | nnrpd 12699 |
. . . . 5
⊢ (𝐾 ∈ (1...𝑀) → 𝐾 ∈
ℝ+) |
3 | | pirp 25523 |
. . . . 5
⊢ π
∈ ℝ+ |
4 | | rpmulcl 12682 |
. . . . 5
⊢ ((𝐾 ∈ ℝ+
∧ π ∈ ℝ+) → (𝐾 · π) ∈
ℝ+) |
5 | 2, 3, 4 | sylancl 585 |
. . . 4
⊢ (𝐾 ∈ (1...𝑀) → (𝐾 · π) ∈
ℝ+) |
6 | | basel.n |
. . . . . 6
⊢ 𝑁 = ((2 · 𝑀) + 1) |
7 | | 2nn 11976 |
. . . . . . . 8
⊢ 2 ∈
ℕ |
8 | | nnmulcl 11927 |
. . . . . . . 8
⊢ ((2
∈ ℕ ∧ 𝑀
∈ ℕ) → (2 · 𝑀) ∈ ℕ) |
9 | 7, 8 | mpan 686 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ → (2
· 𝑀) ∈
ℕ) |
10 | 9 | peano2nnd 11920 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → ((2
· 𝑀) + 1) ∈
ℕ) |
11 | 6, 10 | eqeltrid 2843 |
. . . . 5
⊢ (𝑀 ∈ ℕ → 𝑁 ∈
ℕ) |
12 | 11 | nnrpd 12699 |
. . . 4
⊢ (𝑀 ∈ ℕ → 𝑁 ∈
ℝ+) |
13 | | rpdivcl 12684 |
. . . 4
⊢ (((𝐾 · π) ∈
ℝ+ ∧ 𝑁
∈ ℝ+) → ((𝐾 · π) / 𝑁) ∈
ℝ+) |
14 | 5, 12, 13 | syl2anr 596 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈
ℝ+) |
15 | 14 | rpred 12701 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ) |
16 | 14 | rpgt0d 12704 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < ((𝐾 · π) / 𝑁)) |
17 | 1 | adantl 481 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℕ) |
18 | | nnmulcl 11927 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ ∧ 2 ∈
ℕ) → (𝐾 ·
2) ∈ ℕ) |
19 | 17, 7, 18 | sylancl 585 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈
ℕ) |
20 | 19 | nnred 11918 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈
ℝ) |
21 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℕ) |
22 | 21 | nnred 11918 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℝ) |
23 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℕ) |
24 | 23 | nnred 11918 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℝ) |
25 | 6, 24 | eqeltrrid 2844 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((2 · 𝑀) + 1) ∈ ℝ) |
26 | 17 | nncnd 11919 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℂ) |
27 | | 2cn 11978 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
28 | | mulcom 10888 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℂ ∧ 2 ∈
ℂ) → (𝐾 ·
2) = (2 · 𝐾)) |
29 | 26, 27, 28 | sylancl 585 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) = (2 · 𝐾)) |
30 | | elfzle2 13189 |
. . . . . . . . 9
⊢ (𝐾 ∈ (1...𝑀) → 𝐾 ≤ 𝑀) |
31 | 30 | adantl 481 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ≤ 𝑀) |
32 | 17 | nnred 11918 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℝ) |
33 | | nnre 11910 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
34 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑀 ∈ ℝ) |
35 | | 2re 11977 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
36 | | 2pos 12006 |
. . . . . . . . . . 11
⊢ 0 <
2 |
37 | 35, 36 | pm3.2i 470 |
. . . . . . . . . 10
⊢ (2 ∈
ℝ ∧ 0 < 2) |
38 | 37 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℝ ∧ 0 <
2)) |
39 | | lemul2 11758 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → (𝐾 ≤ 𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀))) |
40 | 32, 34, 38, 39 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 ≤ 𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀))) |
41 | 31, 40 | mpbid 231 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝐾) ≤ (2 · 𝑀)) |
42 | 29, 41 | eqbrtrd 5092 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ≤ (2 · 𝑀)) |
43 | 22 | ltp1d 11835 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) < ((2 · 𝑀) + 1)) |
44 | 20, 22, 25, 42, 43 | lelttrd 11063 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < ((2 · 𝑀) + 1)) |
45 | 44, 6 | breqtrrdi 5112 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < 𝑁) |
46 | 19 | nngt0d 11952 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · 2)) |
47 | 23 | nngt0d 11952 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < 𝑁) |
48 | | pire 25520 |
. . . . . 6
⊢ π
∈ ℝ |
49 | | remulcl 10887 |
. . . . . 6
⊢ ((𝐾 ∈ ℝ ∧ π
∈ ℝ) → (𝐾
· π) ∈ ℝ) |
50 | 32, 48, 49 | sylancl 585 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈
ℝ) |
51 | 5 | adantl 481 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈
ℝ+) |
52 | 51 | rpgt0d 12704 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · π)) |
53 | | ltdiv2 11791 |
. . . . 5
⊢ ((((𝐾 · 2) ∈ ℝ
∧ 0 < (𝐾 ·
2)) ∧ (𝑁 ∈ ℝ
∧ 0 < 𝑁) ∧
((𝐾 · π) ∈
ℝ ∧ 0 < (𝐾
· π))) → ((𝐾
· 2) < 𝑁 ↔
((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2)))) |
54 | 20, 46, 24, 47, 50, 52, 53 | syl222anc 1384 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2)))) |
55 | 45, 54 | mpbid 231 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))) |
56 | | picn 25521 |
. . . . 5
⊢ π
∈ ℂ |
57 | 56 | a1i 11 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → π ∈
ℂ) |
58 | | 2cnne0 12113 |
. . . . 5
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
59 | 58 | a1i 11 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℂ ∧ 2 ≠
0)) |
60 | 17 | nnne0d 11953 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ≠ 0) |
61 | | divcan5 11607 |
. . . 4
⊢ ((π
∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2)) |
62 | 57, 59, 26, 60, 61 | syl112anc 1372 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2)) |
63 | 55, 62 | breqtrd 5096 |
. 2
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < (π / 2)) |
64 | | 0xr 10953 |
. . 3
⊢ 0 ∈
ℝ* |
65 | | rehalfcl 12129 |
. . . 4
⊢ (π
∈ ℝ → (π / 2) ∈ ℝ) |
66 | | rexr 10952 |
. . . 4
⊢ ((π /
2) ∈ ℝ → (π / 2) ∈
ℝ*) |
67 | 48, 65, 66 | mp2b 10 |
. . 3
⊢ (π /
2) ∈ ℝ* |
68 | | elioo2 13049 |
. . 3
⊢ ((0
∈ ℝ* ∧ (π / 2) ∈ ℝ*) →
(((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔
(((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 <
((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2)))) |
69 | 64, 67, 68 | mp2an 688 |
. 2
⊢ (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔
(((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 <
((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2))) |
70 | 15, 16, 63, 69 | syl3anbrc 1341 |
1
⊢ ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2))) |