MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem1 Structured version   Visualization version   GIF version

Theorem basellem1 26230
Description: Lemma for basel 26239. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.) Replace OLD theorem. (Revised by Wolf Lammen, 18-Sep-2020.)
Hypothesis
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
Assertion
Ref Expression
basellem1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))

Proof of Theorem basellem1
StepHypRef Expression
1 elfznn 13285 . . . . . 6 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℕ)
21nnrpd 12770 . . . . 5 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℝ+)
3 pirp 25618 . . . . 5 π ∈ ℝ+
4 rpmulcl 12753 . . . . 5 ((𝐾 ∈ ℝ+ ∧ π ∈ ℝ+) → (𝐾 · π) ∈ ℝ+)
52, 3, 4sylancl 586 . . . 4 (𝐾 ∈ (1...𝑀) → (𝐾 · π) ∈ ℝ+)
6 basel.n . . . . . 6 𝑁 = ((2 · 𝑀) + 1)
7 2nn 12046 . . . . . . . 8 2 ∈ ℕ
8 nnmulcl 11997 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
97, 8mpan 687 . . . . . . 7 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
109peano2nnd 11990 . . . . . 6 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
116, 10eqeltrid 2843 . . . . 5 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
1211nnrpd 12770 . . . 4 (𝑀 ∈ ℕ → 𝑁 ∈ ℝ+)
13 rpdivcl 12755 . . . 4 (((𝐾 · π) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
145, 12, 13syl2anr 597 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
1514rpred 12772 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ)
1614rpgt0d 12775 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < ((𝐾 · π) / 𝑁))
171adantl 482 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
18 nnmulcl 11997 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 2 ∈ ℕ) → (𝐾 · 2) ∈ ℕ)
1917, 7, 18sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℕ)
2019nnred 11988 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℝ)
219adantr 481 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℕ)
2221nnred 11988 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℝ)
2311adantr 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2423nnred 11988 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℝ)
256, 24eqeltrrid 2844 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((2 · 𝑀) + 1) ∈ ℝ)
2617nncnd 11989 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℂ)
27 2cn 12048 . . . . . . . 8 2 ∈ ℂ
28 mulcom 10957 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐾 · 2) = (2 · 𝐾))
2926, 27, 28sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) = (2 · 𝐾))
30 elfzle2 13260 . . . . . . . . 9 (𝐾 ∈ (1...𝑀) → 𝐾𝑀)
3130adantl 482 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾𝑀)
3217nnred 11988 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℝ)
33 nnre 11980 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
3433adantr 481 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
35 2re 12047 . . . . . . . . . . 11 2 ∈ ℝ
36 2pos 12076 . . . . . . . . . . 11 0 < 2
3735, 36pm3.2i 471 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
3837a1i 11 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℝ ∧ 0 < 2))
39 lemul2 11828 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4032, 34, 38, 39syl3anc 1370 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4131, 40mpbid 231 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝐾) ≤ (2 · 𝑀))
4229, 41eqbrtrd 5096 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ≤ (2 · 𝑀))
4322ltp1d 11905 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) < ((2 · 𝑀) + 1))
4420, 22, 25, 42, 43lelttrd 11133 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < ((2 · 𝑀) + 1))
4544, 6breqtrrdi 5116 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < 𝑁)
4619nngt0d 12022 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · 2))
4723nngt0d 12022 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < 𝑁)
48 pire 25615 . . . . . 6 π ∈ ℝ
49 remulcl 10956 . . . . . 6 ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ)
5032, 48, 49sylancl 586 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ)
515adantl 482 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ+)
5251rpgt0d 12775 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · π))
53 ltdiv2 11861 . . . . 5 ((((𝐾 · 2) ∈ ℝ ∧ 0 < (𝐾 · 2)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ ((𝐾 · π) ∈ ℝ ∧ 0 < (𝐾 · π))) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5420, 46, 24, 47, 50, 52, 53syl222anc 1385 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5545, 54mpbid 231 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2)))
56 picn 25616 . . . . 5 π ∈ ℂ
5756a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → π ∈ ℂ)
58 2cnne0 12183 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
5958a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℂ ∧ 2 ≠ 0))
6017nnne0d 12023 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ≠ 0)
61 divcan5 11677 . . . 4 ((π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6257, 59, 26, 60, 61syl112anc 1373 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6355, 62breqtrd 5100 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < (π / 2))
64 0xr 11022 . . 3 0 ∈ ℝ*
65 rehalfcl 12199 . . . 4 (π ∈ ℝ → (π / 2) ∈ ℝ)
66 rexr 11021 . . . 4 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
6748, 65, 66mp2b 10 . . 3 (π / 2) ∈ ℝ*
68 elioo2 13120 . . 3 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2))))
6964, 67, 68mp2an 689 . 2 (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2)))
7015, 16, 63, 69syl3anbrc 1342 1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010   / cdiv 11632  cn 11973  2c2 12028  +crp 12730  (,)cioo 13079  ...cfz 13239  πcpi 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by:  basellem4  26233  basellem8  26237
  Copyright terms: Public domain W3C validator