MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem1 Structured version   Visualization version   GIF version

Theorem basellem1 27138
Description: Lemma for basel 27147. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.) Replace OLD theorem. (Revised by Wolf Lammen, 18-Sep-2020.)
Hypothesis
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
Assertion
Ref Expression
basellem1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))

Proof of Theorem basellem1
StepHypRef Expression
1 elfznn 13589 . . . . . 6 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℕ)
21nnrpd 13072 . . . . 5 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℝ+)
3 pirp 26517 . . . . 5 π ∈ ℝ+
4 rpmulcl 13055 . . . . 5 ((𝐾 ∈ ℝ+ ∧ π ∈ ℝ+) → (𝐾 · π) ∈ ℝ+)
52, 3, 4sylancl 586 . . . 4 (𝐾 ∈ (1...𝑀) → (𝐾 · π) ∈ ℝ+)
6 basel.n . . . . . 6 𝑁 = ((2 · 𝑀) + 1)
7 2nn 12336 . . . . . . . 8 2 ∈ ℕ
8 nnmulcl 12287 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
97, 8mpan 690 . . . . . . 7 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
109peano2nnd 12280 . . . . . 6 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
116, 10eqeltrid 2842 . . . . 5 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
1211nnrpd 13072 . . . 4 (𝑀 ∈ ℕ → 𝑁 ∈ ℝ+)
13 rpdivcl 13057 . . . 4 (((𝐾 · π) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
145, 12, 13syl2anr 597 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
1514rpred 13074 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ)
1614rpgt0d 13077 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < ((𝐾 · π) / 𝑁))
171adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
18 nnmulcl 12287 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 2 ∈ ℕ) → (𝐾 · 2) ∈ ℕ)
1917, 7, 18sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℕ)
2019nnred 12278 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℝ)
219adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℕ)
2221nnred 12278 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℝ)
2311adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2423nnred 12278 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℝ)
256, 24eqeltrrid 2843 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((2 · 𝑀) + 1) ∈ ℝ)
2617nncnd 12279 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℂ)
27 2cn 12338 . . . . . . . 8 2 ∈ ℂ
28 mulcom 11238 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐾 · 2) = (2 · 𝐾))
2926, 27, 28sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) = (2 · 𝐾))
30 elfzle2 13564 . . . . . . . . 9 (𝐾 ∈ (1...𝑀) → 𝐾𝑀)
3130adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾𝑀)
3217nnred 12278 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℝ)
33 nnre 12270 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
3433adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
35 2re 12337 . . . . . . . . . . 11 2 ∈ ℝ
36 2pos 12366 . . . . . . . . . . 11 0 < 2
3735, 36pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
3837a1i 11 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℝ ∧ 0 < 2))
39 lemul2 12117 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4032, 34, 38, 39syl3anc 1370 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4131, 40mpbid 232 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝐾) ≤ (2 · 𝑀))
4229, 41eqbrtrd 5169 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ≤ (2 · 𝑀))
4322ltp1d 12195 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) < ((2 · 𝑀) + 1))
4420, 22, 25, 42, 43lelttrd 11416 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < ((2 · 𝑀) + 1))
4544, 6breqtrrdi 5189 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < 𝑁)
4619nngt0d 12312 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · 2))
4723nngt0d 12312 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < 𝑁)
48 pire 26514 . . . . . 6 π ∈ ℝ
49 remulcl 11237 . . . . . 6 ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ)
5032, 48, 49sylancl 586 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ)
515adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ+)
5251rpgt0d 13077 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · π))
53 ltdiv2 12151 . . . . 5 ((((𝐾 · 2) ∈ ℝ ∧ 0 < (𝐾 · 2)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ ((𝐾 · π) ∈ ℝ ∧ 0 < (𝐾 · π))) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5420, 46, 24, 47, 50, 52, 53syl222anc 1385 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5545, 54mpbid 232 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2)))
56 picn 26515 . . . . 5 π ∈ ℂ
5756a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → π ∈ ℂ)
58 2cnne0 12473 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
5958a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℂ ∧ 2 ≠ 0))
6017nnne0d 12313 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ≠ 0)
61 divcan5 11966 . . . 4 ((π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6257, 59, 26, 60, 61syl112anc 1373 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6355, 62breqtrd 5173 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < (π / 2))
64 0xr 11305 . . 3 0 ∈ ℝ*
65 rehalfcl 12489 . . . 4 (π ∈ ℝ → (π / 2) ∈ ℝ)
66 rexr 11304 . . . 4 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
6748, 65, 66mp2b 10 . . 3 (π / 2) ∈ ℝ*
68 elioo2 13424 . . 3 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2))))
6964, 67, 68mp2an 692 . 2 (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2)))
7015, 16, 63, 69syl3anbrc 1342 1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  *cxr 11291   < clt 11292  cle 11293   / cdiv 11917  cn 12263  2c2 12318  +crp 13031  (,)cioo 13383  ...cfz 13543  πcpi 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916
This theorem is referenced by:  basellem4  27141  basellem8  27145
  Copyright terms: Public domain W3C validator