MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem1 Structured version   Visualization version   GIF version

Theorem basellem1 27019
Description: Lemma for basel 27028. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.) Replace OLD theorem. (Revised by Wolf Lammen, 18-Sep-2020.)
Hypothesis
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
Assertion
Ref Expression
basellem1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))

Proof of Theorem basellem1
StepHypRef Expression
1 elfznn 13455 . . . . . 6 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℕ)
21nnrpd 12934 . . . . 5 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℝ+)
3 pirp 26398 . . . . 5 π ∈ ℝ+
4 rpmulcl 12917 . . . . 5 ((𝐾 ∈ ℝ+ ∧ π ∈ ℝ+) → (𝐾 · π) ∈ ℝ+)
52, 3, 4sylancl 586 . . . 4 (𝐾 ∈ (1...𝑀) → (𝐾 · π) ∈ ℝ+)
6 basel.n . . . . . 6 𝑁 = ((2 · 𝑀) + 1)
7 2nn 12205 . . . . . . . 8 2 ∈ ℕ
8 nnmulcl 12156 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
97, 8mpan 690 . . . . . . 7 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
109peano2nnd 12149 . . . . . 6 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
116, 10eqeltrid 2837 . . . . 5 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
1211nnrpd 12934 . . . 4 (𝑀 ∈ ℕ → 𝑁 ∈ ℝ+)
13 rpdivcl 12919 . . . 4 (((𝐾 · π) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
145, 12, 13syl2anr 597 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
1514rpred 12936 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ)
1614rpgt0d 12939 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < ((𝐾 · π) / 𝑁))
171adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
18 nnmulcl 12156 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 2 ∈ ℕ) → (𝐾 · 2) ∈ ℕ)
1917, 7, 18sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℕ)
2019nnred 12147 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℝ)
219adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℕ)
2221nnred 12147 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℝ)
2311adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2423nnred 12147 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℝ)
256, 24eqeltrrid 2838 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((2 · 𝑀) + 1) ∈ ℝ)
2617nncnd 12148 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℂ)
27 2cn 12207 . . . . . . . 8 2 ∈ ℂ
28 mulcom 11099 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐾 · 2) = (2 · 𝐾))
2926, 27, 28sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) = (2 · 𝐾))
30 elfzle2 13430 . . . . . . . . 9 (𝐾 ∈ (1...𝑀) → 𝐾𝑀)
3130adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾𝑀)
3217nnred 12147 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℝ)
33 nnre 12139 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
3433adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
35 2re 12206 . . . . . . . . . . 11 2 ∈ ℝ
36 2pos 12235 . . . . . . . . . . 11 0 < 2
3735, 36pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
3837a1i 11 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℝ ∧ 0 < 2))
39 lemul2 11981 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4032, 34, 38, 39syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4131, 40mpbid 232 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝐾) ≤ (2 · 𝑀))
4229, 41eqbrtrd 5115 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ≤ (2 · 𝑀))
4322ltp1d 12059 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) < ((2 · 𝑀) + 1))
4420, 22, 25, 42, 43lelttrd 11278 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < ((2 · 𝑀) + 1))
4544, 6breqtrrdi 5135 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < 𝑁)
4619nngt0d 12181 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · 2))
4723nngt0d 12181 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < 𝑁)
48 pire 26394 . . . . . 6 π ∈ ℝ
49 remulcl 11098 . . . . . 6 ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ)
5032, 48, 49sylancl 586 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ)
515adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ+)
5251rpgt0d 12939 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · π))
53 ltdiv2 12015 . . . . 5 ((((𝐾 · 2) ∈ ℝ ∧ 0 < (𝐾 · 2)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ ((𝐾 · π) ∈ ℝ ∧ 0 < (𝐾 · π))) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5420, 46, 24, 47, 50, 52, 53syl222anc 1388 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5545, 54mpbid 232 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2)))
56 picn 26395 . . . . 5 π ∈ ℂ
5756a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → π ∈ ℂ)
58 2cnne0 12337 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
5958a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℂ ∧ 2 ≠ 0))
6017nnne0d 12182 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ≠ 0)
61 divcan5 11830 . . . 4 ((π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6257, 59, 26, 60, 61syl112anc 1376 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6355, 62breqtrd 5119 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < (π / 2))
64 0xr 11166 . . 3 0 ∈ ℝ*
65 rehalfcl 12355 . . . 4 (π ∈ ℝ → (π / 2) ∈ ℝ)
66 rexr 11165 . . . 4 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
6748, 65, 66mp2b 10 . . 3 (π / 2) ∈ ℝ*
68 elioo2 13288 . . 3 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2))))
6964, 67, 68mp2an 692 . 2 (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2)))
7015, 16, 63, 69syl3anbrc 1344 1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  *cxr 11152   < clt 11153  cle 11154   / cdiv 11781  cn 12132  2c2 12187  +crp 12892  (,)cioo 13247  ...cfz 13409  πcpi 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14976  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ef 15976  df-sin 15978  df-cos 15979  df-pi 15981  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-pt 17350  df-prds 17353  df-xrs 17408  df-qtop 17413  df-imas 17414  df-xps 17416  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19231  df-cmn 19696  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-fbas 21290  df-fg 21291  df-cnfld 21294  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796
This theorem is referenced by:  basellem4  27022  basellem8  27026
  Copyright terms: Public domain W3C validator