MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem1 Structured version   Visualization version   GIF version

Theorem basellem1 26998
Description: Lemma for basel 27007. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.) Replace OLD theorem. (Revised by Wolf Lammen, 18-Sep-2020.)
Hypothesis
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
Assertion
Ref Expression
basellem1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))

Proof of Theorem basellem1
StepHypRef Expression
1 elfznn 13521 . . . . . 6 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℕ)
21nnrpd 13000 . . . . 5 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℝ+)
3 pirp 26377 . . . . 5 π ∈ ℝ+
4 rpmulcl 12983 . . . . 5 ((𝐾 ∈ ℝ+ ∧ π ∈ ℝ+) → (𝐾 · π) ∈ ℝ+)
52, 3, 4sylancl 586 . . . 4 (𝐾 ∈ (1...𝑀) → (𝐾 · π) ∈ ℝ+)
6 basel.n . . . . . 6 𝑁 = ((2 · 𝑀) + 1)
7 2nn 12266 . . . . . . . 8 2 ∈ ℕ
8 nnmulcl 12217 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
97, 8mpan 690 . . . . . . 7 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
109peano2nnd 12210 . . . . . 6 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
116, 10eqeltrid 2833 . . . . 5 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
1211nnrpd 13000 . . . 4 (𝑀 ∈ ℕ → 𝑁 ∈ ℝ+)
13 rpdivcl 12985 . . . 4 (((𝐾 · π) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
145, 12, 13syl2anr 597 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
1514rpred 13002 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ)
1614rpgt0d 13005 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < ((𝐾 · π) / 𝑁))
171adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
18 nnmulcl 12217 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 2 ∈ ℕ) → (𝐾 · 2) ∈ ℕ)
1917, 7, 18sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℕ)
2019nnred 12208 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℝ)
219adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℕ)
2221nnred 12208 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℝ)
2311adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2423nnred 12208 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℝ)
256, 24eqeltrrid 2834 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((2 · 𝑀) + 1) ∈ ℝ)
2617nncnd 12209 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℂ)
27 2cn 12268 . . . . . . . 8 2 ∈ ℂ
28 mulcom 11161 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐾 · 2) = (2 · 𝐾))
2926, 27, 28sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) = (2 · 𝐾))
30 elfzle2 13496 . . . . . . . . 9 (𝐾 ∈ (1...𝑀) → 𝐾𝑀)
3130adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾𝑀)
3217nnred 12208 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℝ)
33 nnre 12200 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
3433adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
35 2re 12267 . . . . . . . . . . 11 2 ∈ ℝ
36 2pos 12296 . . . . . . . . . . 11 0 < 2
3735, 36pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
3837a1i 11 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℝ ∧ 0 < 2))
39 lemul2 12042 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4032, 34, 38, 39syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4131, 40mpbid 232 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝐾) ≤ (2 · 𝑀))
4229, 41eqbrtrd 5132 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ≤ (2 · 𝑀))
4322ltp1d 12120 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) < ((2 · 𝑀) + 1))
4420, 22, 25, 42, 43lelttrd 11339 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < ((2 · 𝑀) + 1))
4544, 6breqtrrdi 5152 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < 𝑁)
4619nngt0d 12242 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · 2))
4723nngt0d 12242 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < 𝑁)
48 pire 26373 . . . . . 6 π ∈ ℝ
49 remulcl 11160 . . . . . 6 ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ)
5032, 48, 49sylancl 586 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ)
515adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ+)
5251rpgt0d 13005 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · π))
53 ltdiv2 12076 . . . . 5 ((((𝐾 · 2) ∈ ℝ ∧ 0 < (𝐾 · 2)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ ((𝐾 · π) ∈ ℝ ∧ 0 < (𝐾 · π))) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5420, 46, 24, 47, 50, 52, 53syl222anc 1388 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5545, 54mpbid 232 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2)))
56 picn 26374 . . . . 5 π ∈ ℂ
5756a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → π ∈ ℂ)
58 2cnne0 12398 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
5958a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℂ ∧ 2 ≠ 0))
6017nnne0d 12243 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ≠ 0)
61 divcan5 11891 . . . 4 ((π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6257, 59, 26, 60, 61syl112anc 1376 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6355, 62breqtrd 5136 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < (π / 2))
64 0xr 11228 . . 3 0 ∈ ℝ*
65 rehalfcl 12416 . . . 4 (π ∈ ℝ → (π / 2) ∈ ℝ)
66 rexr 11227 . . . 4 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
6748, 65, 66mp2b 10 . . 3 (π / 2) ∈ ℝ*
68 elioo2 13354 . . 3 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2))))
6964, 67, 68mp2an 692 . 2 (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2)))
7015, 16, 63, 69syl3anbrc 1344 1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216   / cdiv 11842  cn 12193  2c2 12248  +crp 12958  (,)cioo 13313  ...cfz 13475  πcpi 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  basellem4  27001  basellem8  27005
  Copyright terms: Public domain W3C validator