MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem1 Structured version   Visualization version   GIF version

Theorem basellem1 27016
Description: Lemma for basel 27025. Closure of the sequence of roots. (Contributed by Mario Carneiro, 30-Jul-2014.) Replace OLD theorem. (Revised by Wolf Lammen, 18-Sep-2020.)
Hypothesis
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
Assertion
Ref Expression
basellem1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))

Proof of Theorem basellem1
StepHypRef Expression
1 elfznn 13450 . . . . . 6 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℕ)
21nnrpd 12929 . . . . 5 (𝐾 ∈ (1...𝑀) → 𝐾 ∈ ℝ+)
3 pirp 26395 . . . . 5 π ∈ ℝ+
4 rpmulcl 12912 . . . . 5 ((𝐾 ∈ ℝ+ ∧ π ∈ ℝ+) → (𝐾 · π) ∈ ℝ+)
52, 3, 4sylancl 586 . . . 4 (𝐾 ∈ (1...𝑀) → (𝐾 · π) ∈ ℝ+)
6 basel.n . . . . . 6 𝑁 = ((2 · 𝑀) + 1)
7 2nn 12195 . . . . . . . 8 2 ∈ ℕ
8 nnmulcl 12146 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
97, 8mpan 690 . . . . . . 7 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
109peano2nnd 12139 . . . . . 6 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
116, 10eqeltrid 2835 . . . . 5 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
1211nnrpd 12929 . . . 4 (𝑀 ∈ ℕ → 𝑁 ∈ ℝ+)
13 rpdivcl 12914 . . . 4 (((𝐾 · π) ∈ ℝ+𝑁 ∈ ℝ+) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
145, 12, 13syl2anr 597 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ+)
1514rpred 12931 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ ℝ)
1614rpgt0d 12934 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < ((𝐾 · π) / 𝑁))
171adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
18 nnmulcl 12146 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ 2 ∈ ℕ) → (𝐾 · 2) ∈ ℕ)
1917, 7, 18sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℕ)
2019nnred 12137 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ∈ ℝ)
219adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℕ)
2221nnred 12137 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) ∈ ℝ)
2311adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℕ)
2423nnred 12137 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑁 ∈ ℝ)
256, 24eqeltrrid 2836 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((2 · 𝑀) + 1) ∈ ℝ)
2617nncnd 12138 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℂ)
27 2cn 12197 . . . . . . . 8 2 ∈ ℂ
28 mulcom 11089 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 2 ∈ ℂ) → (𝐾 · 2) = (2 · 𝐾))
2926, 27, 28sylancl 586 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) = (2 · 𝐾))
30 elfzle2 13425 . . . . . . . . 9 (𝐾 ∈ (1...𝑀) → 𝐾𝑀)
3130adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾𝑀)
3217nnred 12137 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ∈ ℝ)
33 nnre 12129 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
3433adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝑀 ∈ ℝ)
35 2re 12196 . . . . . . . . . . 11 2 ∈ ℝ
36 2pos 12225 . . . . . . . . . . 11 0 < 2
3735, 36pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
3837a1i 11 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℝ ∧ 0 < 2))
39 lemul2 11971 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4032, 34, 38, 39syl3anc 1373 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾𝑀 ↔ (2 · 𝐾) ≤ (2 · 𝑀)))
4131, 40mpbid 232 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝐾) ≤ (2 · 𝑀))
4229, 41eqbrtrd 5113 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) ≤ (2 · 𝑀))
4322ltp1d 12049 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 · 𝑀) < ((2 · 𝑀) + 1))
4420, 22, 25, 42, 43lelttrd 11268 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < ((2 · 𝑀) + 1))
4544, 6breqtrrdi 5133 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · 2) < 𝑁)
4619nngt0d 12171 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · 2))
4723nngt0d 12171 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < 𝑁)
48 pire 26391 . . . . . 6 π ∈ ℝ
49 remulcl 11088 . . . . . 6 ((𝐾 ∈ ℝ ∧ π ∈ ℝ) → (𝐾 · π) ∈ ℝ)
5032, 48, 49sylancl 586 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ)
515adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (𝐾 · π) ∈ ℝ+)
5251rpgt0d 12934 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 0 < (𝐾 · π))
53 ltdiv2 12005 . . . . 5 ((((𝐾 · 2) ∈ ℝ ∧ 0 < (𝐾 · 2)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁) ∧ ((𝐾 · π) ∈ ℝ ∧ 0 < (𝐾 · π))) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5420, 46, 24, 47, 50, 52, 53syl222anc 1388 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · 2) < 𝑁 ↔ ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2))))
5545, 54mpbid 232 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < ((𝐾 · π) / (𝐾 · 2)))
56 picn 26392 . . . . 5 π ∈ ℂ
5756a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → π ∈ ℂ)
58 2cnne0 12327 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
5958a1i 11 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → (2 ∈ ℂ ∧ 2 ≠ 0))
6017nnne0d 12172 . . . 4 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → 𝐾 ≠ 0)
61 divcan5 11820 . . . 4 ((π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6257, 59, 26, 60, 61syl112anc 1376 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / (𝐾 · 2)) = (π / 2))
6355, 62breqtrd 5117 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) < (π / 2))
64 0xr 11156 . . 3 0 ∈ ℝ*
65 rehalfcl 12345 . . . 4 (π ∈ ℝ → (π / 2) ∈ ℝ)
66 rexr 11155 . . . 4 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
6748, 65, 66mp2b 10 . . 3 (π / 2) ∈ ℝ*
68 elioo2 13283 . . 3 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2))))
6964, 67, 68mp2an 692 . 2 (((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)) ↔ (((𝐾 · π) / 𝑁) ∈ ℝ ∧ 0 < ((𝐾 · π) / 𝑁) ∧ ((𝐾 · π) / 𝑁) < (π / 2)))
7015, 16, 63, 69syl3anbrc 1344 1 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ (1...𝑀)) → ((𝐾 · π) / 𝑁) ∈ (0(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  *cxr 11142   < clt 11143  cle 11144   / cdiv 11771  cn 12122  2c2 12177  +crp 12887  (,)cioo 13242  ...cfz 13404  πcpi 15970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793
This theorem is referenced by:  basellem4  27019  basellem8  27023
  Copyright terms: Public domain W3C validator