Proof of Theorem jm2.27a
Step | Hyp | Ref
| Expression |
1 | | jm2.27a23 |
. 2
⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝑃)) |
2 | | 2z 12352 |
. . . . . 6
⊢ 2 ∈
ℤ |
3 | | jm2.27a3 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℕ) |
4 | 3 | nnzd 12425 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℤ) |
5 | | zmulcl 12369 |
. . . . . 6
⊢ ((2
∈ ℤ ∧ 𝐶
∈ ℤ) → (2 · 𝐶) ∈ ℤ) |
6 | 2, 4, 5 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (2 · 𝐶) ∈
ℤ) |
7 | | jm2.27a2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℕ) |
8 | 7 | nnzd 12425 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℤ) |
9 | | jm2.27a27 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℤ) |
10 | | jm2.27a21 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℤ) |
11 | | jm2.27a8 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ∈
ℕ0) |
12 | 11 | nn0zd 12424 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ ℤ) |
13 | | jm2.27a19 |
. . . . . . . 8
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝐵)) |
14 | | congsym 40790 |
. . . . . . . 8
⊢ ((((2
· 𝐶) ∈ ℤ
∧ 𝐻 ∈ ℤ)
∧ (𝐵 ∈ ℤ
∧ (2 · 𝐶)
∥ (𝐻 − 𝐵))) → (2 · 𝐶) ∥ (𝐵 − 𝐻)) |
15 | 6, 12, 8, 13, 14 | syl22anc 836 |
. . . . . . 7
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐵 − 𝐻)) |
16 | | jm2.27a7 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈
ℕ0) |
17 | 16 | nn0zd 12424 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ ℤ) |
18 | | peano2zm 12363 |
. . . . . . . . 9
⊢ (𝐺 ∈ ℤ → (𝐺 − 1) ∈
ℤ) |
19 | 17, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 − 1) ∈ ℤ) |
20 | 12, 9 | zsubcld 12431 |
. . . . . . . 8
⊢ (𝜑 → (𝐻 − 𝑅) ∈ ℤ) |
21 | | jm2.27a17 |
. . . . . . . 8
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1)) |
22 | | jm2.27a13 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈
(ℤ≥‘2)) |
23 | 11 | nn0ge0d 12296 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤ 𝐻) |
24 | | rmy0 40751 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈
(ℤ≥‘2) → (𝐺 Yrm 0) = 0) |
25 | 22, 24 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 Yrm 0) = 0) |
26 | | jm2.27a29 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻 = (𝐺 Yrm 𝑅)) |
27 | 26 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 Yrm 𝑅) = 𝐻) |
28 | 23, 25, 27 | 3brtr4d 5106 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅)) |
29 | | 0zd 12331 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℤ) |
30 | | lermy 40777 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅))) |
31 | 22, 29, 9, 30 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅))) |
32 | 28, 31 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ 𝑅) |
33 | | elnn0z 12332 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℕ0
↔ (𝑅 ∈ ℤ
∧ 0 ≤ 𝑅)) |
34 | 9, 32, 33 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
35 | | jm2.16nn0 40826 |
. . . . . . . . . 10
⊢ ((𝐺 ∈
(ℤ≥‘2) ∧ 𝑅 ∈ ℕ0) → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅)) |
36 | 22, 34, 35 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅)) |
37 | 26 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻 − 𝑅) = ((𝐺 Yrm 𝑅) − 𝑅)) |
38 | 36, 37 | breqtrrd 5102 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 − 1) ∥ (𝐻 − 𝑅)) |
39 | 6, 19, 20, 21, 38 | dvdstrd 16004 |
. . . . . . 7
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐻 − 𝑅)) |
40 | | congtr 40787 |
. . . . . . 7
⊢ ((((2
· 𝐶) ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ (𝐻 ∈ ℤ
∧ 𝑅 ∈ ℤ)
∧ ((2 · 𝐶)
∥ (𝐵 − 𝐻) ∧ (2 · 𝐶) ∥ (𝐻 − 𝑅))) → (2 · 𝐶) ∥ (𝐵 − 𝑅)) |
41 | 6, 8, 12, 9, 15, 39, 40 | syl222anc 1385 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐶) ∥ (𝐵 − 𝑅)) |
42 | 41 | orcd 870 |
. . . . 5
⊢ (𝜑 → ((2 · 𝐶) ∥ (𝐵 − 𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅))) |
43 | | jm2.27a24 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ ℤ) |
44 | | zmulcl 12369 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ 𝑄
∈ ℤ) → (2 · 𝑄) ∈ ℤ) |
45 | 2, 43, 44 | sylancr 587 |
. . . . . 6
⊢ (𝜑 → (2 · 𝑄) ∈
ℤ) |
46 | | zsqcl 13848 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ ℤ → (𝐶↑2) ∈
ℤ) |
47 | 4, 46 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐶↑2) ∈ ℤ) |
48 | | dvdsmul2 15988 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (𝐶↑2) ∥ (2 ·
(𝐶↑2))) |
49 | 2, 47, 48 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶↑2) ∥ (2 · (𝐶↑2))) |
50 | | jm2.27a10 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
51 | 50 | nn0zd 12424 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 ∈ ℤ) |
52 | 51 | peano2zd 12429 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐽 + 1) ∈ ℤ) |
53 | | zmulcl 12369 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (2 ·
(𝐶↑2)) ∈
ℤ) |
54 | 2, 47, 53 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (2 · (𝐶↑2)) ∈
ℤ) |
55 | | dvdsmultr2 16007 |
. . . . . . . . . . . . 13
⊢ (((𝐶↑2) ∈ ℤ ∧
(𝐽 + 1) ∈ ℤ
∧ (2 · (𝐶↑2)) ∈ ℤ) → ((𝐶↑2) ∥ (2 ·
(𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 ·
(𝐶↑2))))) |
56 | 47, 52, 54, 55 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶↑2) ∥ (2 · (𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 ·
(𝐶↑2))))) |
57 | 49, 56 | mpd 15 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2)))) |
58 | 1 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶↑2) = ((𝐴 Yrm 𝑃)↑2)) |
59 | | jm2.27a15 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2)))) |
60 | | jm2.27a26 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 = (𝐴 Yrm 𝑄)) |
61 | 59, 60 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐽 + 1) · (2 · (𝐶↑2))) = (𝐴 Yrm 𝑄)) |
62 | 57, 58, 61 | 3brtr3d 5105 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄)) |
63 | | jm2.27a1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
(ℤ≥‘2)) |
64 | 52 | zred 12426 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐽 + 1) ∈ ℝ) |
65 | 54 | zred 12426 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 · (𝐶↑2)) ∈
ℝ) |
66 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ∈ ℕ0
→ (𝐽 + 1) ∈
ℕ) |
67 | 50, 66 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 + 1) ∈ ℕ) |
68 | 67 | nngt0d 12022 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < (𝐽 + 1)) |
69 | | 2nn 12046 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℕ |
70 | 3 | nnsqcld 13959 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐶↑2) ∈ ℕ) |
71 | | nnmulcl 11997 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℕ ∧ (𝐶↑2) ∈ ℕ) → (2 ·
(𝐶↑2)) ∈
ℕ) |
72 | 69, 70, 71 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2 · (𝐶↑2)) ∈
ℕ) |
73 | 72 | nngt0d 12022 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < (2 · (𝐶↑2))) |
74 | 64, 65, 68, 73 | mulgt0d 11130 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 < ((𝐽 + 1) · (2 · (𝐶↑2)))) |
75 | 74, 59 | breqtrrd 5102 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝐸) |
76 | | rmy0 40751 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 Yrm 0) = 0) |
77 | 63, 76 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 Yrm 0) = 0) |
78 | 60 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 Yrm 𝑄) = 𝐸) |
79 | 75, 77, 78 | 3brtr4d 5106 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑄)) |
80 | | ltrmy 40774 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄))) |
81 | 63, 29, 43, 80 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄))) |
82 | 79, 81 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑄) |
83 | | elnnz 12329 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ ℕ ↔ (𝑄 ∈ ℤ ∧ 0 <
𝑄)) |
84 | 43, 82, 83 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ ℕ) |
85 | 3 | nngt0d 12022 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝐶) |
86 | 1 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 Yrm 𝑃) = 𝐶) |
87 | 85, 77, 86 | 3brtr4d 5106 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑃)) |
88 | | ltrmy 40774 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃))) |
89 | 63, 29, 10, 88 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃))) |
90 | 87, 89 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 < 𝑃) |
91 | | elnnz 12329 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 <
𝑃)) |
92 | 10, 90, 91 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℕ) |
93 | | jm2.20nn 40819 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑄 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄)) |
94 | 63, 84, 92, 93 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄)) |
95 | 62, 94 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄) |
96 | 1, 4 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 Yrm 𝑃) ∈ ℤ) |
97 | | muldvds2 15991 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄)) |
98 | 10, 96, 43, 97 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄)) |
99 | 95, 98 | mpd 15 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 Yrm 𝑃) ∥ 𝑄) |
100 | 1, 99 | eqbrtrd 5096 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∥ 𝑄) |
101 | 2 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℤ) |
102 | | dvdscmul 15992 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 2 ∈
ℤ) → (𝐶 ∥
𝑄 → (2 · 𝐶) ∥ (2 · 𝑄))) |
103 | 4, 43, 101, 102 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∥ 𝑄 → (2 · 𝐶) ∥ (2 · 𝑄))) |
104 | 100, 103 | mpd 15 |
. . . . . 6
⊢ (𝜑 → (2 · 𝐶) ∥ (2 · 𝑄)) |
105 | | jm2.27a25 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝐴 Xrm 𝑄)) |
106 | | jm2.27a6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈
ℕ0) |
107 | 106 | nn0zd 12424 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ ℤ) |
108 | 105, 107 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∈ ℤ) |
109 | | frmy 40736 |
. . . . . . . . . . 11
⊢
Yrm :((ℤ≥‘2) ×
ℤ)⟶ℤ |
110 | 109 | fovcl 7402 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑅 ∈ ℤ) → (𝐴 Yrm 𝑅) ∈ ℤ) |
111 | 63, 9, 110 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 Yrm 𝑅) ∈ ℤ) |
112 | 26, 12 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 Yrm 𝑅) ∈ ℤ) |
113 | | eluzelz 12592 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ ℤ) |
114 | 63, 113 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℤ) |
115 | 114, 17 | zsubcld 12431 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝐺) ∈ ℤ) |
116 | 111, 112 | zsubcld 12431 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∈ ℤ) |
117 | | jm2.27a16 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∥ (𝐺 − 𝐴)) |
118 | | congsym 40790 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ ℤ ∧ 𝐺 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐹 ∥ (𝐺 − 𝐴))) → 𝐹 ∥ (𝐴 − 𝐺)) |
119 | 107, 17, 114, 117, 118 | syl22anc 836 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∥ (𝐴 − 𝐺)) |
120 | 105, 119 | eqbrtrrd 5098 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∥ (𝐴 − 𝐺)) |
121 | | jm2.15nn0 40825 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝐺 ∈ (ℤ≥‘2)
∧ 𝑅 ∈
ℕ0) → (𝐴 − 𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) |
122 | 63, 22, 34, 121 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) |
123 | 108, 115,
116, 120, 122 | dvdstrd 16004 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅))) |
124 | | jm2.27a18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∥ (𝐻 − 𝐶)) |
125 | 26, 1 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 − 𝐶) = ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃))) |
126 | 124, 105,
125 | 3brtr3d 5105 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃))) |
127 | | congtr 40787 |
. . . . . . . . 9
⊢ ((((𝐴 Xrm 𝑄) ∈ ℤ ∧ (𝐴 Yrm 𝑅) ∈ ℤ) ∧ ((𝐺 Yrm 𝑅) ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ) ∧ ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∧ (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))) → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃))) |
128 | 108, 111,
112, 96, 123, 126, 127 | syl222anc 1385 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃))) |
129 | 128 | orcd 870 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃)))) |
130 | | jm2.26 40824 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑄 ∈ ℕ) ∧ (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅 − 𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))) |
131 | 63, 84, 9, 10, 130 | syl22anc 836 |
. . . . . . 7
⊢ (𝜑 → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅 − 𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))) |
132 | 129, 131 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((2 · 𝑄) ∥ (𝑅 − 𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃))) |
133 | | dvdsacongtr 40806 |
. . . . . 6
⊢ ((((2
· 𝑄) ∈ ℤ
∧ 𝑅 ∈ ℤ)
∧ (𝑃 ∈ ℤ
∧ (2 · 𝐶) ∈
ℤ) ∧ ((2 · 𝐶) ∥ (2 · 𝑄) ∧ ((2 · 𝑄) ∥ (𝑅 − 𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝑅 − 𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃))) |
134 | 45, 9, 10, 6, 104, 132, 133 | syl222anc 1385 |
. . . . 5
⊢ (𝜑 → ((2 · 𝐶) ∥ (𝑅 − 𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃))) |
135 | | acongtr 40800 |
. . . . 5
⊢ ((((2
· 𝐶) ∈ ℤ
∧ 𝐵 ∈ ℤ)
∧ (𝑅 ∈ ℤ
∧ 𝑃 ∈ ℤ)
∧ (((2 · 𝐶)
∥ (𝐵 − 𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅)) ∧ ((2 · 𝐶) ∥ (𝑅 − 𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝐵 − 𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))) |
136 | 6, 8, 9, 10, 42, 134, 135 | syl222anc 1385 |
. . . 4
⊢ (𝜑 → ((2 · 𝐶) ∥ (𝐵 − 𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))) |
137 | 7 | nnnn0d 12293 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
138 | 3 | nnnn0d 12293 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈
ℕ0) |
139 | | jm2.27a20 |
. . . . . 6
⊢ (𝜑 → 𝐵 ≤ 𝐶) |
140 | | elfz2nn0 13347 |
. . . . . 6
⊢ (𝐵 ∈ (0...𝐶) ↔ (𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0
∧ 𝐵 ≤ 𝐶)) |
141 | 137, 138,
139, 140 | syl3anbrc 1342 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (0...𝐶)) |
142 | 92 | nnnn0d 12293 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
143 | | rmygeid 40786 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑃 ∈ ℕ0) → 𝑃 ≤ (𝐴 Yrm 𝑃)) |
144 | 63, 142, 143 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ≤ (𝐴 Yrm 𝑃)) |
145 | 144, 1 | breqtrrd 5102 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≤ 𝐶) |
146 | | elfz2nn0 13347 |
. . . . . 6
⊢ (𝑃 ∈ (0...𝐶) ↔ (𝑃 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0
∧ 𝑃 ≤ 𝐶)) |
147 | 142, 138,
145, 146 | syl3anbrc 1342 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ (0...𝐶)) |
148 | | acongeq 40805 |
. . . . 5
⊢ ((𝐶 ∈ ℕ ∧ 𝐵 ∈ (0...𝐶) ∧ 𝑃 ∈ (0...𝐶)) → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵 − 𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))) |
149 | 3, 141, 147, 148 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵 − 𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))) |
150 | 136, 149 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝐵 = 𝑃) |
151 | 150 | oveq2d 7291 |
. 2
⊢ (𝜑 → (𝐴 Yrm 𝐵) = (𝐴 Yrm 𝑃)) |
152 | 1, 151 | eqtr4d 2781 |
1
⊢ (𝜑 → 𝐶 = (𝐴 Yrm 𝐵)) |