Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27a Structured version   Visualization version   GIF version

Theorem jm2.27a 42981
Description: Lemma for jm2.27 42984. Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
jm2.27a1 (𝜑𝐴 ∈ (ℤ‘2))
jm2.27a2 (𝜑𝐵 ∈ ℕ)
jm2.27a3 (𝜑𝐶 ∈ ℕ)
jm2.27a4 (𝜑𝐷 ∈ ℕ0)
jm2.27a5 (𝜑𝐸 ∈ ℕ0)
jm2.27a6 (𝜑𝐹 ∈ ℕ0)
jm2.27a7 (𝜑𝐺 ∈ ℕ0)
jm2.27a8 (𝜑𝐻 ∈ ℕ0)
jm2.27a9 (𝜑𝐼 ∈ ℕ0)
jm2.27a10 (𝜑𝐽 ∈ ℕ0)
jm2.27a11 (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
jm2.27a12 (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1)
jm2.27a13 (𝜑𝐺 ∈ (ℤ‘2))
jm2.27a14 (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1)
jm2.27a15 (𝜑𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
jm2.27a16 (𝜑𝐹 ∥ (𝐺𝐴))
jm2.27a17 (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1))
jm2.27a18 (𝜑𝐹 ∥ (𝐻𝐶))
jm2.27a19 (𝜑 → (2 · 𝐶) ∥ (𝐻𝐵))
jm2.27a20 (𝜑𝐵𝐶)
jm2.27a21 (𝜑𝑃 ∈ ℤ)
jm2.27a22 (𝜑𝐷 = (𝐴 Xrm 𝑃))
jm2.27a23 (𝜑𝐶 = (𝐴 Yrm 𝑃))
jm2.27a24 (𝜑𝑄 ∈ ℤ)
jm2.27a25 (𝜑𝐹 = (𝐴 Xrm 𝑄))
jm2.27a26 (𝜑𝐸 = (𝐴 Yrm 𝑄))
jm2.27a27 (𝜑𝑅 ∈ ℤ)
jm2.27a28 (𝜑𝐼 = (𝐺 Xrm 𝑅))
jm2.27a29 (𝜑𝐻 = (𝐺 Yrm 𝑅))
Assertion
Ref Expression
jm2.27a (𝜑𝐶 = (𝐴 Yrm 𝐵))

Proof of Theorem jm2.27a
StepHypRef Expression
1 jm2.27a23 . 2 (𝜑𝐶 = (𝐴 Yrm 𝑃))
2 2z 12525 . . . . . 6 2 ∈ ℤ
3 jm2.27a3 . . . . . . 7 (𝜑𝐶 ∈ ℕ)
43nnzd 12516 . . . . . 6 (𝜑𝐶 ∈ ℤ)
5 zmulcl 12542 . . . . . 6 ((2 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (2 · 𝐶) ∈ ℤ)
62, 4, 5sylancr 587 . . . . 5 (𝜑 → (2 · 𝐶) ∈ ℤ)
7 jm2.27a2 . . . . . 6 (𝜑𝐵 ∈ ℕ)
87nnzd 12516 . . . . 5 (𝜑𝐵 ∈ ℤ)
9 jm2.27a27 . . . . 5 (𝜑𝑅 ∈ ℤ)
10 jm2.27a21 . . . . 5 (𝜑𝑃 ∈ ℤ)
11 jm2.27a8 . . . . . . . 8 (𝜑𝐻 ∈ ℕ0)
1211nn0zd 12515 . . . . . . 7 (𝜑𝐻 ∈ ℤ)
13 jm2.27a19 . . . . . . . 8 (𝜑 → (2 · 𝐶) ∥ (𝐻𝐵))
14 congsym 42944 . . . . . . . 8 ((((2 · 𝐶) ∈ ℤ ∧ 𝐻 ∈ ℤ) ∧ (𝐵 ∈ ℤ ∧ (2 · 𝐶) ∥ (𝐻𝐵))) → (2 · 𝐶) ∥ (𝐵𝐻))
156, 12, 8, 13, 14syl22anc 838 . . . . . . 7 (𝜑 → (2 · 𝐶) ∥ (𝐵𝐻))
16 jm2.27a7 . . . . . . . . . 10 (𝜑𝐺 ∈ ℕ0)
1716nn0zd 12515 . . . . . . . . 9 (𝜑𝐺 ∈ ℤ)
18 peano2zm 12536 . . . . . . . . 9 (𝐺 ∈ ℤ → (𝐺 − 1) ∈ ℤ)
1917, 18syl 17 . . . . . . . 8 (𝜑 → (𝐺 − 1) ∈ ℤ)
2012, 9zsubcld 12603 . . . . . . . 8 (𝜑 → (𝐻𝑅) ∈ ℤ)
21 jm2.27a17 . . . . . . . 8 (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1))
22 jm2.27a13 . . . . . . . . . 10 (𝜑𝐺 ∈ (ℤ‘2))
2311nn0ge0d 12466 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝐻)
24 rmy0 42905 . . . . . . . . . . . . . 14 (𝐺 ∈ (ℤ‘2) → (𝐺 Yrm 0) = 0)
2522, 24syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐺 Yrm 0) = 0)
26 jm2.27a29 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝐺 Yrm 𝑅))
2726eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → (𝐺 Yrm 𝑅) = 𝐻)
2823, 25, 273brtr4d 5127 . . . . . . . . . . . 12 (𝜑 → (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅))
29 0zd 12501 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
30 lermy 42931 . . . . . . . . . . . . 13 ((𝐺 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅)))
3122, 29, 9, 30syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅)))
3228, 31mpbird 257 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑅)
33 elnn0z 12502 . . . . . . . . . . 11 (𝑅 ∈ ℕ0 ↔ (𝑅 ∈ ℤ ∧ 0 ≤ 𝑅))
349, 32, 33sylanbrc 583 . . . . . . . . . 10 (𝜑𝑅 ∈ ℕ0)
35 jm2.16nn0 42980 . . . . . . . . . 10 ((𝐺 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℕ0) → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅))
3622, 34, 35syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅))
3726oveq1d 7368 . . . . . . . . 9 (𝜑 → (𝐻𝑅) = ((𝐺 Yrm 𝑅) − 𝑅))
3836, 37breqtrrd 5123 . . . . . . . 8 (𝜑 → (𝐺 − 1) ∥ (𝐻𝑅))
396, 19, 20, 21, 38dvdstrd 16224 . . . . . . 7 (𝜑 → (2 · 𝐶) ∥ (𝐻𝑅))
40 congtr 42941 . . . . . . 7 ((((2 · 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐻 ∈ ℤ ∧ 𝑅 ∈ ℤ) ∧ ((2 · 𝐶) ∥ (𝐵𝐻) ∧ (2 · 𝐶) ∥ (𝐻𝑅))) → (2 · 𝐶) ∥ (𝐵𝑅))
416, 8, 12, 9, 15, 39, 40syl222anc 1388 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ (𝐵𝑅))
4241orcd 873 . . . . 5 (𝜑 → ((2 · 𝐶) ∥ (𝐵𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅)))
43 jm2.27a24 . . . . . . 7 (𝜑𝑄 ∈ ℤ)
44 zmulcl 12542 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (2 · 𝑄) ∈ ℤ)
452, 43, 44sylancr 587 . . . . . 6 (𝜑 → (2 · 𝑄) ∈ ℤ)
46 zsqcl 14054 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
474, 46syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐶↑2) ∈ ℤ)
48 dvdsmul2 16207 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (𝐶↑2) ∥ (2 · (𝐶↑2)))
492, 47, 48sylancr 587 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∥ (2 · (𝐶↑2)))
50 jm2.27a10 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℕ0)
5150nn0zd 12515 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ ℤ)
5251peano2zd 12601 . . . . . . . . . . . . 13 (𝜑 → (𝐽 + 1) ∈ ℤ)
53 zmulcl 12542 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (2 · (𝐶↑2)) ∈ ℤ)
542, 47, 53sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐶↑2)) ∈ ℤ)
55 dvdsmultr2 16227 . . . . . . . . . . . . 13 (((𝐶↑2) ∈ ℤ ∧ (𝐽 + 1) ∈ ℤ ∧ (2 · (𝐶↑2)) ∈ ℤ) → ((𝐶↑2) ∥ (2 · (𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2)))))
5647, 52, 54, 55syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((𝐶↑2) ∥ (2 · (𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2)))))
5749, 56mpd 15 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2))))
581oveq1d 7368 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) = ((𝐴 Yrm 𝑃)↑2))
59 jm2.27a15 . . . . . . . . . . . 12 (𝜑𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
60 jm2.27a26 . . . . . . . . . . . 12 (𝜑𝐸 = (𝐴 Yrm 𝑄))
6159, 60eqtr3d 2766 . . . . . . . . . . 11 (𝜑 → ((𝐽 + 1) · (2 · (𝐶↑2))) = (𝐴 Yrm 𝑄))
6257, 58, 613brtr3d 5126 . . . . . . . . . 10 (𝜑 → ((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄))
63 jm2.27a1 . . . . . . . . . . 11 (𝜑𝐴 ∈ (ℤ‘2))
6452zred 12598 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 + 1) ∈ ℝ)
6554zred 12598 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝐶↑2)) ∈ ℝ)
66 nn0p1nn 12441 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ)
6750, 66syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐽 + 1) ∈ ℕ)
6867nngt0d 12195 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (𝐽 + 1))
69 2nn 12219 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
703nnsqcld 14169 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶↑2) ∈ ℕ)
71 nnmulcl 12170 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ ∧ (𝐶↑2) ∈ ℕ) → (2 · (𝐶↑2)) ∈ ℕ)
7269, 70, 71sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝐶↑2)) ∈ ℕ)
7372nngt0d 12195 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (2 · (𝐶↑2)))
7464, 65, 68, 73mulgt0d 11289 . . . . . . . . . . . . . . 15 (𝜑 → 0 < ((𝐽 + 1) · (2 · (𝐶↑2))))
7574, 59breqtrrd 5123 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐸)
76 rmy0 42905 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
7763, 76syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 Yrm 0) = 0)
7860eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 Yrm 𝑄) = 𝐸)
7975, 77, 783brtr4d 5127 . . . . . . . . . . . . 13 (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑄))
80 ltrmy 42928 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄)))
8163, 29, 43, 80syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄)))
8279, 81mpbird 257 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑄)
83 elnnz 12499 . . . . . . . . . . . 12 (𝑄 ∈ ℕ ↔ (𝑄 ∈ ℤ ∧ 0 < 𝑄))
8443, 82, 83sylanbrc 583 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℕ)
853nngt0d 12195 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐶)
861eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 Yrm 𝑃) = 𝐶)
8785, 77, 863brtr4d 5127 . . . . . . . . . . . . 13 (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑃))
88 ltrmy 42928 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃)))
8963, 29, 10, 88syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃)))
9087, 89mpbird 257 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑃)
91 elnnz 12499 . . . . . . . . . . . 12 (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 < 𝑃))
9210, 90, 91sylanbrc 583 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
93 jm2.20nn 42973 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄))
9463, 84, 92, 93syl3anc 1373 . . . . . . . . . 10 (𝜑 → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄))
9562, 94mpbid 232 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄)
961, 4eqeltrrd 2829 . . . . . . . . . 10 (𝜑 → (𝐴 Yrm 𝑃) ∈ ℤ)
97 muldvds2 16210 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄))
9810, 96, 43, 97syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄))
9995, 98mpd 15 . . . . . . . 8 (𝜑 → (𝐴 Yrm 𝑃) ∥ 𝑄)
1001, 99eqbrtrd 5117 . . . . . . 7 (𝜑𝐶𝑄)
1012a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
102 dvdscmul 16211 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 2 ∈ ℤ) → (𝐶𝑄 → (2 · 𝐶) ∥ (2 · 𝑄)))
1034, 43, 101, 102syl3anc 1373 . . . . . . 7 (𝜑 → (𝐶𝑄 → (2 · 𝐶) ∥ (2 · 𝑄)))
104100, 103mpd 15 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ (2 · 𝑄))
105 jm2.27a25 . . . . . . . . . 10 (𝜑𝐹 = (𝐴 Xrm 𝑄))
106 jm2.27a6 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℕ0)
107106nn0zd 12515 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
108105, 107eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝐴 Xrm 𝑄) ∈ ℤ)
109 frmy 42890 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
110109fovcl 7481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℤ) → (𝐴 Yrm 𝑅) ∈ ℤ)
11163, 9, 110syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴 Yrm 𝑅) ∈ ℤ)
11226, 12eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝐺 Yrm 𝑅) ∈ ℤ)
113 eluzelz 12763 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
11463, 113syl 17 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
115114, 17zsubcld 12603 . . . . . . . . . 10 (𝜑 → (𝐴𝐺) ∈ ℤ)
116111, 112zsubcld 12603 . . . . . . . . . 10 (𝜑 → ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∈ ℤ)
117 jm2.27a16 . . . . . . . . . . . 12 (𝜑𝐹 ∥ (𝐺𝐴))
118 congsym 42944 . . . . . . . . . . . 12 (((𝐹 ∈ ℤ ∧ 𝐺 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐹 ∥ (𝐺𝐴))) → 𝐹 ∥ (𝐴𝐺))
119107, 17, 114, 117, 118syl22anc 838 . . . . . . . . . . 11 (𝜑𝐹 ∥ (𝐴𝐺))
120105, 119eqbrtrrd 5119 . . . . . . . . . 10 (𝜑 → (𝐴 Xrm 𝑄) ∥ (𝐴𝐺))
121 jm2.15nn0 42979 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℕ0) → (𝐴𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))
12263, 22, 34, 121syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐴𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))
123108, 115, 116, 120, 122dvdstrd 16224 . . . . . . . . 9 (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))
124 jm2.27a18 . . . . . . . . . 10 (𝜑𝐹 ∥ (𝐻𝐶))
12526, 1oveq12d 7371 . . . . . . . . . 10 (𝜑 → (𝐻𝐶) = ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
126124, 105, 1253brtr3d 5126 . . . . . . . . 9 (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
127 congtr 42941 . . . . . . . . 9 ((((𝐴 Xrm 𝑄) ∈ ℤ ∧ (𝐴 Yrm 𝑅) ∈ ℤ) ∧ ((𝐺 Yrm 𝑅) ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ) ∧ ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∧ (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))) → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
128108, 111, 112, 96, 123, 126, 127syl222anc 1388 . . . . . . . 8 (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
129128orcd 873 . . . . . . 7 (𝜑 → ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))))
130 jm2.26 42978 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℕ) ∧ (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃))))
13163, 84, 9, 10, 130syl22anc 838 . . . . . . 7 (𝜑 → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃))))
132129, 131mpbid 232 . . . . . 6 (𝜑 → ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))
133 dvdsacongtr 42960 . . . . . 6 ((((2 · 𝑄) ∈ ℤ ∧ 𝑅 ∈ ℤ) ∧ (𝑃 ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) ∧ ((2 · 𝐶) ∥ (2 · 𝑄) ∧ ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝑅𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))
13445, 9, 10, 6, 104, 132, 133syl222anc 1388 . . . . 5 (𝜑 → ((2 · 𝐶) ∥ (𝑅𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))
135 acongtr 42954 . . . . 5 ((((2 · 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (((2 · 𝐶) ∥ (𝐵𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅)) ∧ ((2 · 𝐶) ∥ (𝑅𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))
1366, 8, 9, 10, 42, 134, 135syl222anc 1388 . . . 4 (𝜑 → ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))
1377nnnn0d 12463 . . . . . 6 (𝜑𝐵 ∈ ℕ0)
1383nnnn0d 12463 . . . . . 6 (𝜑𝐶 ∈ ℕ0)
139 jm2.27a20 . . . . . 6 (𝜑𝐵𝐶)
140 elfz2nn0 13539 . . . . . 6 (𝐵 ∈ (0...𝐶) ↔ (𝐵 ∈ ℕ0𝐶 ∈ ℕ0𝐵𝐶))
141137, 138, 139, 140syl3anbrc 1344 . . . . 5 (𝜑𝐵 ∈ (0...𝐶))
14292nnnn0d 12463 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
143 rmygeid 42940 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℕ0) → 𝑃 ≤ (𝐴 Yrm 𝑃))
14463, 142, 143syl2anc 584 . . . . . . 7 (𝜑𝑃 ≤ (𝐴 Yrm 𝑃))
145144, 1breqtrrd 5123 . . . . . 6 (𝜑𝑃𝐶)
146 elfz2nn0 13539 . . . . . 6 (𝑃 ∈ (0...𝐶) ↔ (𝑃 ∈ ℕ0𝐶 ∈ ℕ0𝑃𝐶))
147142, 138, 145, 146syl3anbrc 1344 . . . . 5 (𝜑𝑃 ∈ (0...𝐶))
148 acongeq 42959 . . . . 5 ((𝐶 ∈ ℕ ∧ 𝐵 ∈ (0...𝐶) ∧ 𝑃 ∈ (0...𝐶)) → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))))
1493, 141, 147, 148syl3anc 1373 . . . 4 (𝜑 → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))))
150136, 149mpbird 257 . . 3 (𝜑𝐵 = 𝑃)
151150oveq2d 7369 . 2 (𝜑 → (𝐴 Yrm 𝐵) = (𝐴 Yrm 𝑃))
1521, 151eqtr4d 2767 1 (𝜑𝐶 = (𝐴 Yrm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365  -cneg 11366  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  cexp 13986  cdvds 16181   Xrm crmx 42876   Yrm crmy 42877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-numer 16664  df-denom 16665  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-squarenn 42817  df-pell1qr 42818  df-pell14qr 42819  df-pell1234qr 42820  df-pellfund 42821  df-rmx 42878  df-rmy 42879
This theorem is referenced by:  jm2.27b  42982
  Copyright terms: Public domain W3C validator