Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27a Structured version   Visualization version   GIF version

Theorem jm2.27a 42967
Description: Lemma for jm2.27 42970. Reverse direction after existential quantifiers are expanded. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Hypotheses
Ref Expression
jm2.27a1 (𝜑𝐴 ∈ (ℤ‘2))
jm2.27a2 (𝜑𝐵 ∈ ℕ)
jm2.27a3 (𝜑𝐶 ∈ ℕ)
jm2.27a4 (𝜑𝐷 ∈ ℕ0)
jm2.27a5 (𝜑𝐸 ∈ ℕ0)
jm2.27a6 (𝜑𝐹 ∈ ℕ0)
jm2.27a7 (𝜑𝐺 ∈ ℕ0)
jm2.27a8 (𝜑𝐻 ∈ ℕ0)
jm2.27a9 (𝜑𝐼 ∈ ℕ0)
jm2.27a10 (𝜑𝐽 ∈ ℕ0)
jm2.27a11 (𝜑 → ((𝐷↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
jm2.27a12 (𝜑 → ((𝐹↑2) − (((𝐴↑2) − 1) · (𝐸↑2))) = 1)
jm2.27a13 (𝜑𝐺 ∈ (ℤ‘2))
jm2.27a14 (𝜑 → ((𝐼↑2) − (((𝐺↑2) − 1) · (𝐻↑2))) = 1)
jm2.27a15 (𝜑𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
jm2.27a16 (𝜑𝐹 ∥ (𝐺𝐴))
jm2.27a17 (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1))
jm2.27a18 (𝜑𝐹 ∥ (𝐻𝐶))
jm2.27a19 (𝜑 → (2 · 𝐶) ∥ (𝐻𝐵))
jm2.27a20 (𝜑𝐵𝐶)
jm2.27a21 (𝜑𝑃 ∈ ℤ)
jm2.27a22 (𝜑𝐷 = (𝐴 Xrm 𝑃))
jm2.27a23 (𝜑𝐶 = (𝐴 Yrm 𝑃))
jm2.27a24 (𝜑𝑄 ∈ ℤ)
jm2.27a25 (𝜑𝐹 = (𝐴 Xrm 𝑄))
jm2.27a26 (𝜑𝐸 = (𝐴 Yrm 𝑄))
jm2.27a27 (𝜑𝑅 ∈ ℤ)
jm2.27a28 (𝜑𝐼 = (𝐺 Xrm 𝑅))
jm2.27a29 (𝜑𝐻 = (𝐺 Yrm 𝑅))
Assertion
Ref Expression
jm2.27a (𝜑𝐶 = (𝐴 Yrm 𝐵))

Proof of Theorem jm2.27a
StepHypRef Expression
1 jm2.27a23 . 2 (𝜑𝐶 = (𝐴 Yrm 𝑃))
2 2z 12541 . . . . . 6 2 ∈ ℤ
3 jm2.27a3 . . . . . . 7 (𝜑𝐶 ∈ ℕ)
43nnzd 12532 . . . . . 6 (𝜑𝐶 ∈ ℤ)
5 zmulcl 12558 . . . . . 6 ((2 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (2 · 𝐶) ∈ ℤ)
62, 4, 5sylancr 587 . . . . 5 (𝜑 → (2 · 𝐶) ∈ ℤ)
7 jm2.27a2 . . . . . 6 (𝜑𝐵 ∈ ℕ)
87nnzd 12532 . . . . 5 (𝜑𝐵 ∈ ℤ)
9 jm2.27a27 . . . . 5 (𝜑𝑅 ∈ ℤ)
10 jm2.27a21 . . . . 5 (𝜑𝑃 ∈ ℤ)
11 jm2.27a8 . . . . . . . 8 (𝜑𝐻 ∈ ℕ0)
1211nn0zd 12531 . . . . . . 7 (𝜑𝐻 ∈ ℤ)
13 jm2.27a19 . . . . . . . 8 (𝜑 → (2 · 𝐶) ∥ (𝐻𝐵))
14 congsym 42930 . . . . . . . 8 ((((2 · 𝐶) ∈ ℤ ∧ 𝐻 ∈ ℤ) ∧ (𝐵 ∈ ℤ ∧ (2 · 𝐶) ∥ (𝐻𝐵))) → (2 · 𝐶) ∥ (𝐵𝐻))
156, 12, 8, 13, 14syl22anc 838 . . . . . . 7 (𝜑 → (2 · 𝐶) ∥ (𝐵𝐻))
16 jm2.27a7 . . . . . . . . . 10 (𝜑𝐺 ∈ ℕ0)
1716nn0zd 12531 . . . . . . . . 9 (𝜑𝐺 ∈ ℤ)
18 peano2zm 12552 . . . . . . . . 9 (𝐺 ∈ ℤ → (𝐺 − 1) ∈ ℤ)
1917, 18syl 17 . . . . . . . 8 (𝜑 → (𝐺 − 1) ∈ ℤ)
2012, 9zsubcld 12619 . . . . . . . 8 (𝜑 → (𝐻𝑅) ∈ ℤ)
21 jm2.27a17 . . . . . . . 8 (𝜑 → (2 · 𝐶) ∥ (𝐺 − 1))
22 jm2.27a13 . . . . . . . . . 10 (𝜑𝐺 ∈ (ℤ‘2))
2311nn0ge0d 12482 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝐻)
24 rmy0 42891 . . . . . . . . . . . . . 14 (𝐺 ∈ (ℤ‘2) → (𝐺 Yrm 0) = 0)
2522, 24syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐺 Yrm 0) = 0)
26 jm2.27a29 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝐺 Yrm 𝑅))
2726eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → (𝐺 Yrm 𝑅) = 𝐻)
2823, 25, 273brtr4d 5134 . . . . . . . . . . . 12 (𝜑 → (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅))
29 0zd 12517 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℤ)
30 lermy 42917 . . . . . . . . . . . . 13 ((𝐺 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅)))
3122, 29, 9, 30syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (0 ≤ 𝑅 ↔ (𝐺 Yrm 0) ≤ (𝐺 Yrm 𝑅)))
3228, 31mpbird 257 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑅)
33 elnn0z 12518 . . . . . . . . . . 11 (𝑅 ∈ ℕ0 ↔ (𝑅 ∈ ℤ ∧ 0 ≤ 𝑅))
349, 32, 33sylanbrc 583 . . . . . . . . . 10 (𝜑𝑅 ∈ ℕ0)
35 jm2.16nn0 42966 . . . . . . . . . 10 ((𝐺 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℕ0) → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅))
3622, 34, 35syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐺 − 1) ∥ ((𝐺 Yrm 𝑅) − 𝑅))
3726oveq1d 7384 . . . . . . . . 9 (𝜑 → (𝐻𝑅) = ((𝐺 Yrm 𝑅) − 𝑅))
3836, 37breqtrrd 5130 . . . . . . . 8 (𝜑 → (𝐺 − 1) ∥ (𝐻𝑅))
396, 19, 20, 21, 38dvdstrd 16241 . . . . . . 7 (𝜑 → (2 · 𝐶) ∥ (𝐻𝑅))
40 congtr 42927 . . . . . . 7 ((((2 · 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐻 ∈ ℤ ∧ 𝑅 ∈ ℤ) ∧ ((2 · 𝐶) ∥ (𝐵𝐻) ∧ (2 · 𝐶) ∥ (𝐻𝑅))) → (2 · 𝐶) ∥ (𝐵𝑅))
416, 8, 12, 9, 15, 39, 40syl222anc 1388 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ (𝐵𝑅))
4241orcd 873 . . . . 5 (𝜑 → ((2 · 𝐶) ∥ (𝐵𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅)))
43 jm2.27a24 . . . . . . 7 (𝜑𝑄 ∈ ℤ)
44 zmulcl 12558 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (2 · 𝑄) ∈ ℤ)
452, 43, 44sylancr 587 . . . . . 6 (𝜑 → (2 · 𝑄) ∈ ℤ)
46 zsqcl 14070 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → (𝐶↑2) ∈ ℤ)
474, 46syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐶↑2) ∈ ℤ)
48 dvdsmul2 16224 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (𝐶↑2) ∥ (2 · (𝐶↑2)))
492, 47, 48sylancr 587 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∥ (2 · (𝐶↑2)))
50 jm2.27a10 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℕ0)
5150nn0zd 12531 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ ℤ)
5251peano2zd 12617 . . . . . . . . . . . . 13 (𝜑 → (𝐽 + 1) ∈ ℤ)
53 zmulcl 12558 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ (𝐶↑2) ∈ ℤ) → (2 · (𝐶↑2)) ∈ ℤ)
542, 47, 53sylancr 587 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐶↑2)) ∈ ℤ)
55 dvdsmultr2 16244 . . . . . . . . . . . . 13 (((𝐶↑2) ∈ ℤ ∧ (𝐽 + 1) ∈ ℤ ∧ (2 · (𝐶↑2)) ∈ ℤ) → ((𝐶↑2) ∥ (2 · (𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2)))))
5647, 52, 54, 55syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((𝐶↑2) ∥ (2 · (𝐶↑2)) → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2)))))
5749, 56mpd 15 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) ∥ ((𝐽 + 1) · (2 · (𝐶↑2))))
581oveq1d 7384 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) = ((𝐴 Yrm 𝑃)↑2))
59 jm2.27a15 . . . . . . . . . . . 12 (𝜑𝐸 = ((𝐽 + 1) · (2 · (𝐶↑2))))
60 jm2.27a26 . . . . . . . . . . . 12 (𝜑𝐸 = (𝐴 Yrm 𝑄))
6159, 60eqtr3d 2766 . . . . . . . . . . 11 (𝜑 → ((𝐽 + 1) · (2 · (𝐶↑2))) = (𝐴 Yrm 𝑄))
6257, 58, 613brtr3d 5133 . . . . . . . . . 10 (𝜑 → ((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄))
63 jm2.27a1 . . . . . . . . . . 11 (𝜑𝐴 ∈ (ℤ‘2))
6452zred 12614 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 + 1) ∈ ℝ)
6554zred 12614 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (𝐶↑2)) ∈ ℝ)
66 nn0p1nn 12457 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ)
6750, 66syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐽 + 1) ∈ ℕ)
6867nngt0d 12211 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (𝐽 + 1))
69 2nn 12235 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
703nnsqcld 14185 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐶↑2) ∈ ℕ)
71 nnmulcl 12186 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ ∧ (𝐶↑2) ∈ ℕ) → (2 · (𝐶↑2)) ∈ ℕ)
7269, 70, 71sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 · (𝐶↑2)) ∈ ℕ)
7372nngt0d 12211 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < (2 · (𝐶↑2)))
7464, 65, 68, 73mulgt0d 11305 . . . . . . . . . . . . . . 15 (𝜑 → 0 < ((𝐽 + 1) · (2 · (𝐶↑2))))
7574, 59breqtrrd 5130 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐸)
76 rmy0 42891 . . . . . . . . . . . . . . 15 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
7763, 76syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 Yrm 0) = 0)
7860eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 Yrm 𝑄) = 𝐸)
7975, 77, 783brtr4d 5134 . . . . . . . . . . . . 13 (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑄))
80 ltrmy 42914 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄)))
8163, 29, 43, 80syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝑄 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑄)))
8279, 81mpbird 257 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑄)
83 elnnz 12515 . . . . . . . . . . . 12 (𝑄 ∈ ℕ ↔ (𝑄 ∈ ℤ ∧ 0 < 𝑄))
8443, 82, 83sylanbrc 583 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℕ)
853nngt0d 12211 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐶)
861eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 Yrm 𝑃) = 𝐶)
8785, 77, 863brtr4d 5134 . . . . . . . . . . . . 13 (𝜑 → (𝐴 Yrm 0) < (𝐴 Yrm 𝑃))
88 ltrmy 42914 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃)))
8963, 29, 10, 88syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝑃 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑃)))
9087, 89mpbird 257 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑃)
91 elnnz 12515 . . . . . . . . . . . 12 (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 < 𝑃))
9210, 90, 91sylanbrc 583 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
93 jm2.20nn 42959 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄))
9463, 84, 92, 93syl3anc 1373 . . . . . . . . . 10 (𝜑 → (((𝐴 Yrm 𝑃)↑2) ∥ (𝐴 Yrm 𝑄) ↔ (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄))
9562, 94mpbid 232 . . . . . . . . 9 (𝜑 → (𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄)
961, 4eqeltrrd 2829 . . . . . . . . . 10 (𝜑 → (𝐴 Yrm 𝑃) ∈ ℤ)
97 muldvds2 16227 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄))
9810, 96, 43, 97syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝑃 · (𝐴 Yrm 𝑃)) ∥ 𝑄 → (𝐴 Yrm 𝑃) ∥ 𝑄))
9995, 98mpd 15 . . . . . . . 8 (𝜑 → (𝐴 Yrm 𝑃) ∥ 𝑄)
1001, 99eqbrtrd 5124 . . . . . . 7 (𝜑𝐶𝑄)
1012a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
102 dvdscmul 16228 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 2 ∈ ℤ) → (𝐶𝑄 → (2 · 𝐶) ∥ (2 · 𝑄)))
1034, 43, 101, 102syl3anc 1373 . . . . . . 7 (𝜑 → (𝐶𝑄 → (2 · 𝐶) ∥ (2 · 𝑄)))
104100, 103mpd 15 . . . . . 6 (𝜑 → (2 · 𝐶) ∥ (2 · 𝑄))
105 jm2.27a25 . . . . . . . . . 10 (𝜑𝐹 = (𝐴 Xrm 𝑄))
106 jm2.27a6 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℕ0)
107106nn0zd 12531 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
108105, 107eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝐴 Xrm 𝑄) ∈ ℤ)
109 frmy 42876 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
110109fovcl 7497 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℤ) → (𝐴 Yrm 𝑅) ∈ ℤ)
11163, 9, 110syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴 Yrm 𝑅) ∈ ℤ)
11226, 12eqeltrrd 2829 . . . . . . . . 9 (𝜑 → (𝐺 Yrm 𝑅) ∈ ℤ)
113 eluzelz 12779 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
11463, 113syl 17 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
115114, 17zsubcld 12619 . . . . . . . . . 10 (𝜑 → (𝐴𝐺) ∈ ℤ)
116111, 112zsubcld 12619 . . . . . . . . . 10 (𝜑 → ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∈ ℤ)
117 jm2.27a16 . . . . . . . . . . . 12 (𝜑𝐹 ∥ (𝐺𝐴))
118 congsym 42930 . . . . . . . . . . . 12 (((𝐹 ∈ ℤ ∧ 𝐺 ∈ ℤ) ∧ (𝐴 ∈ ℤ ∧ 𝐹 ∥ (𝐺𝐴))) → 𝐹 ∥ (𝐴𝐺))
119107, 17, 114, 117, 118syl22anc 838 . . . . . . . . . . 11 (𝜑𝐹 ∥ (𝐴𝐺))
120105, 119eqbrtrrd 5126 . . . . . . . . . 10 (𝜑 → (𝐴 Xrm 𝑄) ∥ (𝐴𝐺))
121 jm2.15nn0 42965 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℕ0) → (𝐴𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))
12263, 22, 34, 121syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝐴𝐺) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))
123108, 115, 116, 120, 122dvdstrd 16241 . . . . . . . . 9 (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)))
124 jm2.27a18 . . . . . . . . . 10 (𝜑𝐹 ∥ (𝐻𝐶))
12526, 1oveq12d 7387 . . . . . . . . . 10 (𝜑 → (𝐻𝐶) = ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
126124, 105, 1253brtr3d 5133 . . . . . . . . 9 (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
127 congtr 42927 . . . . . . . . 9 ((((𝐴 Xrm 𝑄) ∈ ℤ ∧ (𝐴 Yrm 𝑅) ∈ ℤ) ∧ ((𝐺 Yrm 𝑅) ∈ ℤ ∧ (𝐴 Yrm 𝑃) ∈ ℤ) ∧ ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐺 Yrm 𝑅)) ∧ (𝐴 Xrm 𝑄) ∥ ((𝐺 Yrm 𝑅) − (𝐴 Yrm 𝑃)))) → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
128108, 111, 112, 96, 123, 126, 127syl222anc 1388 . . . . . . . 8 (𝜑 → (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)))
129128orcd 873 . . . . . . 7 (𝜑 → ((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))))
130 jm2.26 42964 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑄 ∈ ℕ) ∧ (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ)) → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃))))
13163, 84, 9, 10, 130syl22anc 838 . . . . . . 7 (𝜑 → (((𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − (𝐴 Yrm 𝑃)) ∨ (𝐴 Xrm 𝑄) ∥ ((𝐴 Yrm 𝑅) − -(𝐴 Yrm 𝑃))) ↔ ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃))))
132129, 131mpbid 232 . . . . . 6 (𝜑 → ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))
133 dvdsacongtr 42946 . . . . . 6 ((((2 · 𝑄) ∈ ℤ ∧ 𝑅 ∈ ℤ) ∧ (𝑃 ∈ ℤ ∧ (2 · 𝐶) ∈ ℤ) ∧ ((2 · 𝐶) ∥ (2 · 𝑄) ∧ ((2 · 𝑄) ∥ (𝑅𝑃) ∨ (2 · 𝑄) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝑅𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))
13445, 9, 10, 6, 104, 132, 133syl222anc 1388 . . . . 5 (𝜑 → ((2 · 𝐶) ∥ (𝑅𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))
135 acongtr 42940 . . . . 5 ((((2 · 𝐶) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (((2 · 𝐶) ∥ (𝐵𝑅) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑅)) ∧ ((2 · 𝐶) ∥ (𝑅𝑃) ∨ (2 · 𝐶) ∥ (𝑅 − -𝑃)))) → ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))
1366, 8, 9, 10, 42, 134, 135syl222anc 1388 . . . 4 (𝜑 → ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃)))
1377nnnn0d 12479 . . . . . 6 (𝜑𝐵 ∈ ℕ0)
1383nnnn0d 12479 . . . . . 6 (𝜑𝐶 ∈ ℕ0)
139 jm2.27a20 . . . . . 6 (𝜑𝐵𝐶)
140 elfz2nn0 13555 . . . . . 6 (𝐵 ∈ (0...𝐶) ↔ (𝐵 ∈ ℕ0𝐶 ∈ ℕ0𝐵𝐶))
141137, 138, 139, 140syl3anbrc 1344 . . . . 5 (𝜑𝐵 ∈ (0...𝐶))
14292nnnn0d 12479 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
143 rmygeid 42926 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℕ0) → 𝑃 ≤ (𝐴 Yrm 𝑃))
14463, 142, 143syl2anc 584 . . . . . . 7 (𝜑𝑃 ≤ (𝐴 Yrm 𝑃))
145144, 1breqtrrd 5130 . . . . . 6 (𝜑𝑃𝐶)
146 elfz2nn0 13555 . . . . . 6 (𝑃 ∈ (0...𝐶) ↔ (𝑃 ∈ ℕ0𝐶 ∈ ℕ0𝑃𝐶))
147142, 138, 145, 146syl3anbrc 1344 . . . . 5 (𝜑𝑃 ∈ (0...𝐶))
148 acongeq 42945 . . . . 5 ((𝐶 ∈ ℕ ∧ 𝐵 ∈ (0...𝐶) ∧ 𝑃 ∈ (0...𝐶)) → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))))
1493, 141, 147, 148syl3anc 1373 . . . 4 (𝜑 → (𝐵 = 𝑃 ↔ ((2 · 𝐶) ∥ (𝐵𝑃) ∨ (2 · 𝐶) ∥ (𝐵 − -𝑃))))
150136, 149mpbird 257 . . 3 (𝜑𝐵 = 𝑃)
151150oveq2d 7385 . 2 (𝜑 → (𝐴 Yrm 𝐵) = (𝐴 Yrm 𝑃))
1521, 151eqtr4d 2767 1 (𝜑𝐶 = (𝐴 Yrm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  cexp 14002  cdvds 16198   Xrm crmx 42861   Yrm crmy 42862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-numer 16681  df-denom 16682  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-squarenn 42802  df-pell1qr 42803  df-pell14qr 42804  df-pell1234qr 42805  df-pellfund 42806  df-rmx 42863  df-rmy 42864
This theorem is referenced by:  jm2.27b  42968
  Copyright terms: Public domain W3C validator