MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperp Structured version   Visualization version   GIF version

Theorem colperp 28632
Description: Deduce a perpendicularity from perpendicularity and colinearity. (Contributed by Thierry Arnoux, 8-Dec-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperp.a (𝜑𝐴𝑃)
colperp.b (𝜑𝐵𝑃)
colperp.c (𝜑𝐶𝑃)
colperp.1 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)𝐷)
colperp.2 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
colperp.3 (𝜑𝐴𝐶)
Assertion
Ref Expression
colperp (𝜑 → (𝐴𝐿𝐶)(⟂G‘𝐺)𝐷)

Proof of Theorem colperp
StepHypRef Expression
1 colperpex.p . . 3 𝑃 = (Base‘𝐺)
2 colperpex.i . . 3 𝐼 = (Itv‘𝐺)
3 colperpex.l . . 3 𝐿 = (LineG‘𝐺)
4 colperpex.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 colperp.a . . 3 (𝜑𝐴𝑃)
6 colperp.c . . 3 (𝜑𝐶𝑃)
7 colperp.3 . . 3 (𝜑𝐴𝐶)
8 colperp.1 . . . 4 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)𝐷)
93, 4, 8perpln1 28613 . . 3 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
10 colperp.b . . . 4 (𝜑𝐵𝑃)
111, 2, 3, 4, 5, 10, 9tglnne 28531 . . . 4 (𝜑𝐴𝐵)
121, 2, 3, 4, 5, 10, 11tglinerflx1 28536 . . 3 (𝜑𝐴 ∈ (𝐴𝐿𝐵))
1311neneqd 2930 . . . 4 (𝜑 → ¬ 𝐴 = 𝐵)
14 colperp.2 . . . . . 6 (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
1514orcomd 871 . . . . 5 (𝜑 → (𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
1615ord 864 . . . 4 (𝜑 → (¬ 𝐴 = 𝐵𝐶 ∈ (𝐴𝐿𝐵)))
1713, 16mpd 15 . . 3 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
181, 2, 3, 4, 5, 6, 7, 7, 9, 12, 17tglinethru 28539 . 2 (𝜑 → (𝐴𝐿𝐵) = (𝐴𝐿𝐶))
1918, 8eqbrtrrd 5126 1 (𝜑 → (𝐴𝐿𝐶)(⟂G‘𝐺)𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  distcds 17205  TarskiGcstrkg 28330  Itvcitv 28336  LineGclng 28337  ⟂Gcperpg 28598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-trkgc 28351  df-trkgb 28352  df-trkgcb 28353  df-trkg 28356  df-cgrg 28414  df-perpg 28599
This theorem is referenced by:  trgcopy  28707
  Copyright terms: Public domain W3C validator