Step | Hyp | Ref
| Expression |
1 | | isperp.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
2 | | isperp.d |
. . . 4
⊢ − =
(dist‘𝐺) |
3 | | isperp.i |
. . . 4
⊢ 𝐼 = (Itv‘𝐺) |
4 | | isperp.l |
. . . 4
⊢ 𝐿 = (LineG‘𝐺) |
5 | | eqid 2738 |
. . . 4
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
6 | | isperp.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
7 | 6 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝐺 ∈ TarskiG) |
8 | | ragperp.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝐵 ∈ ran 𝐿) |
10 | | simprr 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝐵) |
11 | 1, 4, 3, 7, 9, 10 | tglnpt 26910 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑣 ∈ 𝑃) |
12 | | isperp.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
13 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝐴 ∈ ran 𝐿) |
14 | | ragperp.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
15 | 14 | elin1d 4132 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
16 | 15 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑋 ∈ 𝐴) |
17 | 1, 4, 3, 7, 13, 16 | tglnpt 26910 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑋 ∈ 𝑃) |
18 | | simprl 768 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑢 ∈ 𝐴) |
19 | 1, 4, 3, 7, 13, 18 | tglnpt 26910 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑢 ∈ 𝑃) |
20 | | ragperp.v |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ 𝐵) |
21 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑉 ∈ 𝐵) |
22 | 1, 4, 3, 7, 9, 21 | tglnpt 26910 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑉 ∈ 𝑃) |
23 | | ragperp.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
24 | 23 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑈 ∈ 𝐴) |
25 | 1, 4, 3, 7, 13, 24 | tglnpt 26910 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑈 ∈ 𝑃) |
26 | | ragperp.r |
. . . . . . . 8
⊢ (𝜑 → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) |
27 | 26 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) |
28 | | ragperp.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ≠ 𝑋) |
29 | 28 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑈 ≠ 𝑋) |
30 | 23 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈 ∈ 𝐴) |
31 | 6 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐺 ∈ TarskiG) |
32 | 17 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋 ∈ 𝑃) |
33 | 19 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢 ∈ 𝑃) |
34 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → ¬ 𝑋 = 𝑢) |
35 | 34 | neqned 2950 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋 ≠ 𝑢) |
36 | 12 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 ∈ ran 𝐿) |
37 | 15 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋 ∈ 𝐴) |
38 | 18 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢 ∈ 𝐴) |
39 | 1, 3, 4, 31, 32, 33, 35, 35, 36, 37, 38 | tglinethru 26997 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 = (𝑋𝐿𝑢)) |
40 | 30, 39 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈 ∈ (𝑋𝐿𝑢)) |
41 | 40 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (¬ 𝑋 = 𝑢 → 𝑈 ∈ (𝑋𝐿𝑢))) |
42 | 41 | orrd 860 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (𝑋 = 𝑢 ∨ 𝑈 ∈ (𝑋𝐿𝑢))) |
43 | 42 | orcomd 868 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (𝑈 ∈ (𝑋𝐿𝑢) ∨ 𝑋 = 𝑢)) |
44 | 1, 2, 3, 4, 5, 7, 25, 17, 22, 19, 27, 29, 43 | ragcol 27060 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑢𝑋𝑉”〉 ∈ (∟G‘𝐺)) |
45 | 1, 2, 3, 4, 5, 7, 19, 17, 22, 44 | ragcom 27059 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑉𝑋𝑢”〉 ∈ (∟G‘𝐺)) |
46 | | ragperp.2 |
. . . . . 6
⊢ (𝜑 → 𝑉 ≠ 𝑋) |
47 | 46 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 𝑉 ≠ 𝑋) |
48 | 20 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉 ∈ 𝐵) |
49 | 6 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐺 ∈ TarskiG) |
50 | 17 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋 ∈ 𝑃) |
51 | 11 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣 ∈ 𝑃) |
52 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → ¬ 𝑋 = 𝑣) |
53 | 52 | neqned 2950 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋 ≠ 𝑣) |
54 | 8 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 ∈ ran 𝐿) |
55 | 14 | elin2d 4133 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
56 | 55 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋 ∈ 𝐵) |
57 | 10 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣 ∈ 𝐵) |
58 | 1, 3, 4, 49, 50, 51, 53, 53, 54, 56, 57 | tglinethru 26997 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 = (𝑋𝐿𝑣)) |
59 | 48, 58 | eleqtrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉 ∈ (𝑋𝐿𝑣)) |
60 | 59 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (¬ 𝑋 = 𝑣 → 𝑉 ∈ (𝑋𝐿𝑣))) |
61 | 60 | orrd 860 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (𝑋 = 𝑣 ∨ 𝑉 ∈ (𝑋𝐿𝑣))) |
62 | 61 | orcomd 868 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → (𝑉 ∈ (𝑋𝐿𝑣) ∨ 𝑋 = 𝑣)) |
63 | 1, 2, 3, 4, 5, 7, 22, 17, 19, 11, 45, 47, 62 | ragcol 27060 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑣𝑋𝑢”〉 ∈ (∟G‘𝐺)) |
64 | 1, 2, 3, 4, 5, 7, 11, 17, 19, 63 | ragcom 27059 |
. . 3
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵)) → 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
65 | 64 | ralrimivva 3123 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
66 | 1, 2, 3, 4, 6, 12,
8, 14 | isperp2 27076 |
. 2
⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
67 | 65, 66 | mpbird 256 |
1
⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) |