Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragperp Structured version   Visualization version   GIF version

Theorem ragperp 26515
 Description: Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
ragperp.b (𝜑𝐵 ∈ ran 𝐿)
ragperp.x (𝜑𝑋 ∈ (𝐴𝐵))
ragperp.u (𝜑𝑈𝐴)
ragperp.v (𝜑𝑉𝐵)
ragperp.1 (𝜑𝑈𝑋)
ragperp.2 (𝜑𝑉𝑋)
ragperp.r (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragperp (𝜑𝐴(⟂G‘𝐺)𝐵)

Proof of Theorem ragperp
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . 4 𝑃 = (Base‘𝐺)
2 isperp.d . . . 4 = (dist‘𝐺)
3 isperp.i . . . 4 𝐼 = (Itv‘𝐺)
4 isperp.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2801 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 484 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐺 ∈ TarskiG)
8 ragperp.b . . . . . 6 (𝜑𝐵 ∈ ran 𝐿)
98adantr 484 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐵 ∈ ran 𝐿)
10 simprr 772 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝐵)
111, 4, 3, 7, 9, 10tglnpt 26347 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝑃)
12 isperp.a . . . . . 6 (𝜑𝐴 ∈ ran 𝐿)
1312adantr 484 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐴 ∈ ran 𝐿)
14 ragperp.x . . . . . . 7 (𝜑𝑋 ∈ (𝐴𝐵))
1514elin1d 4128 . . . . . 6 (𝜑𝑋𝐴)
1615adantr 484 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝐴)
171, 4, 3, 7, 13, 16tglnpt 26347 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝑃)
18 simprl 770 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝐴)
191, 4, 3, 7, 13, 18tglnpt 26347 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝑃)
20 ragperp.v . . . . . . 7 (𝜑𝑉𝐵)
2120adantr 484 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝐵)
221, 4, 3, 7, 9, 21tglnpt 26347 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑃)
23 ragperp.u . . . . . . . . 9 (𝜑𝑈𝐴)
2423adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝐴)
251, 4, 3, 7, 13, 24tglnpt 26347 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑃)
26 ragperp.r . . . . . . . 8 (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
2726adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
28 ragperp.1 . . . . . . . 8 (𝜑𝑈𝑋)
2928adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑋)
3023ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈𝐴)
316ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐺 ∈ TarskiG)
3217adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑃)
3319adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝑃)
34 simpr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → ¬ 𝑋 = 𝑢)
3534neqned 2997 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑢)
3612ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 ∈ ran 𝐿)
3715ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝐴)
3818adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝐴)
391, 3, 4, 31, 32, 33, 35, 35, 36, 37, 38tglinethru 26434 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 = (𝑋𝐿𝑢))
4030, 39eleqtrd 2895 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈 ∈ (𝑋𝐿𝑢))
4140ex 416 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4241orrd 860 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4342orcomd 868 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑈 ∈ (𝑋𝐿𝑢) ∨ 𝑋 = 𝑢))
441, 2, 3, 4, 5, 7, 25, 17, 22, 19, 27, 29, 43ragcol 26497 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑉”⟩ ∈ (∟G‘𝐺))
451, 2, 3, 4, 5, 7, 19, 17, 22, 44ragcom 26496 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑉𝑋𝑢”⟩ ∈ (∟G‘𝐺))
46 ragperp.2 . . . . . 6 (𝜑𝑉𝑋)
4746adantr 484 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑋)
4820ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉𝐵)
496ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐺 ∈ TarskiG)
5017adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑃)
5111adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝑃)
52 simpr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → ¬ 𝑋 = 𝑣)
5352neqned 2997 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑣)
548ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 ∈ ran 𝐿)
5514elin2d 4129 . . . . . . . . . . 11 (𝜑𝑋𝐵)
5655ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝐵)
5710adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝐵)
581, 3, 4, 49, 50, 51, 53, 53, 54, 56, 57tglinethru 26434 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 = (𝑋𝐿𝑣))
5948, 58eleqtrd 2895 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉 ∈ (𝑋𝐿𝑣))
6059ex 416 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6160orrd 860 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6261orcomd 868 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑉 ∈ (𝑋𝐿𝑣) ∨ 𝑋 = 𝑣))
631, 2, 3, 4, 5, 7, 22, 17, 19, 11, 45, 47, 62ragcol 26497 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑣𝑋𝑢”⟩ ∈ (∟G‘𝐺))
641, 2, 3, 4, 5, 7, 11, 17, 19, 63ragcom 26496 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
6564ralrimivva 3159 . 2 (𝜑 → ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
661, 2, 3, 4, 6, 12, 8, 14isperp2 26513 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
6765, 66mpbird 260 1 (𝜑𝐴(⟂G‘𝐺)𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109   ∩ cin 3883   class class class wbr 5033  ran crn 5524  ‘cfv 6328  (class class class)co 7139  ⟨“cs3 14199  Basecbs 16479  distcds 16570  TarskiGcstrkg 26228  Itvcitv 26234  LineGclng 26235  pInvGcmir 26450  ∟Gcrag 26491  ⟂Gcperpg 26493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-trkgc 26246  df-trkgb 26247  df-trkgcb 26248  df-trkg 26251  df-cgrg 26309  df-mir 26451  df-rag 26492  df-perpg 26494 This theorem is referenced by:  footexALT  26516  footexlem2  26518  colperpexlem3  26530  mideulem2  26532  lmimid  26592  hypcgrlem1  26597  hypcgrlem2  26598  trgcopyeulem  26603
 Copyright terms: Public domain W3C validator