MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragperp Structured version   Visualization version   GIF version

Theorem ragperp 28696
Description: Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
ragperp.b (𝜑𝐵 ∈ ran 𝐿)
ragperp.x (𝜑𝑋 ∈ (𝐴𝐵))
ragperp.u (𝜑𝑈𝐴)
ragperp.v (𝜑𝑉𝐵)
ragperp.1 (𝜑𝑈𝑋)
ragperp.2 (𝜑𝑉𝑋)
ragperp.r (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragperp (𝜑𝐴(⟂G‘𝐺)𝐵)

Proof of Theorem ragperp
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . 4 𝑃 = (Base‘𝐺)
2 isperp.d . . . 4 = (dist‘𝐺)
3 isperp.i . . . 4 𝐼 = (Itv‘𝐺)
4 isperp.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2735 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐺 ∈ TarskiG)
8 ragperp.b . . . . . 6 (𝜑𝐵 ∈ ran 𝐿)
98adantr 480 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐵 ∈ ran 𝐿)
10 simprr 772 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝐵)
111, 4, 3, 7, 9, 10tglnpt 28528 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝑃)
12 isperp.a . . . . . 6 (𝜑𝐴 ∈ ran 𝐿)
1312adantr 480 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐴 ∈ ran 𝐿)
14 ragperp.x . . . . . . 7 (𝜑𝑋 ∈ (𝐴𝐵))
1514elin1d 4179 . . . . . 6 (𝜑𝑋𝐴)
1615adantr 480 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝐴)
171, 4, 3, 7, 13, 16tglnpt 28528 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝑃)
18 simprl 770 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝐴)
191, 4, 3, 7, 13, 18tglnpt 28528 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝑃)
20 ragperp.v . . . . . . 7 (𝜑𝑉𝐵)
2120adantr 480 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝐵)
221, 4, 3, 7, 9, 21tglnpt 28528 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑃)
23 ragperp.u . . . . . . . . 9 (𝜑𝑈𝐴)
2423adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝐴)
251, 4, 3, 7, 13, 24tglnpt 28528 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑃)
26 ragperp.r . . . . . . . 8 (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
2726adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
28 ragperp.1 . . . . . . . 8 (𝜑𝑈𝑋)
2928adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑋)
3023ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈𝐴)
316ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐺 ∈ TarskiG)
3217adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑃)
3319adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝑃)
34 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → ¬ 𝑋 = 𝑢)
3534neqned 2939 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑢)
3612ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 ∈ ran 𝐿)
3715ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝐴)
3818adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝐴)
391, 3, 4, 31, 32, 33, 35, 35, 36, 37, 38tglinethru 28615 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 = (𝑋𝐿𝑢))
4030, 39eleqtrd 2836 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈 ∈ (𝑋𝐿𝑢))
4140ex 412 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4241orrd 863 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4342orcomd 871 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑈 ∈ (𝑋𝐿𝑢) ∨ 𝑋 = 𝑢))
441, 2, 3, 4, 5, 7, 25, 17, 22, 19, 27, 29, 43ragcol 28678 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑉”⟩ ∈ (∟G‘𝐺))
451, 2, 3, 4, 5, 7, 19, 17, 22, 44ragcom 28677 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑉𝑋𝑢”⟩ ∈ (∟G‘𝐺))
46 ragperp.2 . . . . . 6 (𝜑𝑉𝑋)
4746adantr 480 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑋)
4820ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉𝐵)
496ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐺 ∈ TarskiG)
5017adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑃)
5111adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝑃)
52 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → ¬ 𝑋 = 𝑣)
5352neqned 2939 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑣)
548ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 ∈ ran 𝐿)
5514elin2d 4180 . . . . . . . . . . 11 (𝜑𝑋𝐵)
5655ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝐵)
5710adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝐵)
581, 3, 4, 49, 50, 51, 53, 53, 54, 56, 57tglinethru 28615 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 = (𝑋𝐿𝑣))
5948, 58eleqtrd 2836 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉 ∈ (𝑋𝐿𝑣))
6059ex 412 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6160orrd 863 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6261orcomd 871 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑉 ∈ (𝑋𝐿𝑣) ∨ 𝑋 = 𝑣))
631, 2, 3, 4, 5, 7, 22, 17, 19, 11, 45, 47, 62ragcol 28678 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑣𝑋𝑢”⟩ ∈ (∟G‘𝐺))
641, 2, 3, 4, 5, 7, 11, 17, 19, 63ragcom 28677 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
6564ralrimivva 3187 . 2 (𝜑 → ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
661, 2, 3, 4, 6, 12, 8, 14isperp2 28694 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
6765, 66mpbird 257 1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  cin 3925   class class class wbr 5119  ran crn 5655  cfv 6531  (class class class)co 7405  ⟨“cs3 14861  Basecbs 17228  distcds 17280  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  pInvGcmir 28631  ∟Gcrag 28672  ⟂Gcperpg 28674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490  df-mir 28632  df-rag 28673  df-perpg 28675
This theorem is referenced by:  footexALT  28697  footexlem2  28699  colperpexlem3  28711  mideulem2  28713  lmimid  28773  hypcgrlem1  28778  hypcgrlem2  28779  trgcopyeulem  28784
  Copyright terms: Public domain W3C validator