![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpconncompss | Structured version Visualization version GIF version |
Description: The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
Ref | Expression |
---|---|
tgpconncomp.x | ⊢ 𝑋 = (Base‘𝐺) |
tgpconncomp.z | ⊢ 0 = (0g‘𝐺) |
tgpconncomp.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpconncomp.s | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
Ref | Expression |
---|---|
tgpconncompss | ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpconncomp.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
2 | tgpconncomp.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
3 | 1, 2 | tgptopon 24106 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
4 | 3 | 3ad2ant1 1132 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | simp3 1137 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ 𝐽) | |
6 | 1 | opnsubg 24132 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ (Clsd‘𝐽)) |
7 | 5, 6 | elind 4210 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
8 | tgpconncomp.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
9 | 8 | subg0cl 19165 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑇) |
10 | 9 | 3ad2ant2 1133 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 0 ∈ 𝑇) |
11 | tgpconncomp.s | . . 3 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
12 | 11 | conncompclo 23459 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 0 ∈ 𝑇) → 𝑆 ⊆ 𝑇) |
13 | 4, 7, 10, 12 | syl3anc 1370 | 1 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {crab 3433 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾t crest 17467 TopOpenctopn 17468 0gc0g 17486 SubGrpcsubg 19151 TopOnctopon 22932 Clsdccld 23040 Conncconn 23435 TopGrpctgp 24095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-rest 17469 df-0g 17488 df-topgen 17490 df-plusf 18665 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-cn 23251 df-cnp 23252 df-conn 23436 df-tx 23586 df-hmeo 23779 df-tmd 24096 df-tgp 24097 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |