| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgpconncompss | Structured version Visualization version GIF version | ||
| Description: The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgpconncomp.x | ⊢ 𝑋 = (Base‘𝐺) |
| tgpconncomp.z | ⊢ 0 = (0g‘𝐺) |
| tgpconncomp.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
| tgpconncomp.s | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
| Ref | Expression |
|---|---|
| tgpconncompss | ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpconncomp.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
| 2 | tgpconncomp.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | 1, 2 | tgptopon 23975 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ 𝐽) | |
| 6 | 1 | opnsubg 24001 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ (Clsd‘𝐽)) |
| 7 | 5, 6 | elind 4165 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
| 8 | tgpconncomp.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 9 | 8 | subg0cl 19072 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑇) |
| 10 | 9 | 3ad2ant2 1134 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 0 ∈ 𝑇) |
| 11 | tgpconncomp.s | . . 3 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
| 12 | 11 | conncompclo 23328 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 0 ∈ 𝑇) → 𝑆 ⊆ 𝑇) |
| 13 | 4, 7, 10, 12 | syl3anc 1373 | 1 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 ∩ cin 3915 ⊆ wss 3916 𝒫 cpw 4565 ∪ cuni 4873 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 ↾t crest 17389 TopOpenctopn 17390 0gc0g 17408 SubGrpcsubg 19058 TopOnctopon 22803 Clsdccld 22909 Conncconn 23304 TopGrpctgp 23964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fi 9368 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-rest 17391 df-0g 17410 df-topgen 17412 df-plusf 18572 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-cn 23120 df-cnp 23121 df-conn 23305 df-tx 23455 df-hmeo 23648 df-tmd 23965 df-tgp 23966 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |