![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgpconncompss | Structured version Visualization version GIF version |
Description: The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.) |
Ref | Expression |
---|---|
tgpconncomp.x | ⊢ 𝑋 = (Base‘𝐺) |
tgpconncomp.z | ⊢ 0 = (0g‘𝐺) |
tgpconncomp.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpconncomp.s | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
Ref | Expression |
---|---|
tgpconncompss | ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgpconncomp.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐺) | |
2 | tgpconncomp.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
3 | 1, 2 | tgptopon 22384 | . . 3 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋)) |
4 | 3 | 3ad2ant1 1113 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | simp3 1118 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ 𝐽) | |
6 | 1 | opnsubg 22409 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ (Clsd‘𝐽)) |
7 | 5, 6 | elind 4055 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽))) |
8 | tgpconncomp.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
9 | 8 | subg0cl 18061 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑇) |
10 | 9 | 3ad2ant2 1114 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 0 ∈ 𝑇) |
11 | tgpconncomp.s | . . 3 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
12 | 11 | conncompclo 21737 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑇 ∈ (𝐽 ∩ (Clsd‘𝐽)) ∧ 0 ∈ 𝑇) → 𝑆 ⊆ 𝑇) |
13 | 4, 7, 10, 12 | syl3anc 1351 | 1 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ 𝐽) → 𝑆 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 {crab 3086 ∩ cin 3824 ⊆ wss 3825 𝒫 cpw 4416 ∪ cuni 4706 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 ↾t crest 16540 TopOpenctopn 16541 0gc0g 16559 SubGrpcsubg 18047 TopOnctopon 21212 Clsdccld 21318 Conncconn 21713 TopGrpctgp 22373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-oadd 7901 df-er 8081 df-map 8200 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-fi 8662 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-rest 16542 df-0g 16561 df-topgen 16563 df-plusf 17699 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-grp 17884 df-minusg 17885 df-sbg 17886 df-subg 18050 df-top 21196 df-topon 21213 df-topsp 21235 df-bases 21248 df-cld 21321 df-ntr 21322 df-cls 21323 df-cn 21529 df-cnp 21530 df-conn 21714 df-tx 21864 df-hmeo 22057 df-tmd 22374 df-tgp 22375 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |