| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retopon | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| retopon | ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop 24671 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
| 2 | uniretop 24672 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 3 | 2 | toptopon 22827 | . 2 ⊢ ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ran crn 5612 ‘cfv 6476 ℝcr 11000 (,)cioo 13240 topGenctg 17336 Topctop 22803 TopOnctopon 22820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-ioo 13244 df-topgen 17342 df-top 22804 df-topon 22821 df-bases 22856 |
| This theorem is referenced by: xrtgioo 24717 reconnlem1 24737 reconn 24739 cnmpopc 24844 cnrehmeo 24873 cnrehmeoOLD 24874 bndth 24879 evth2 24881 htpycc 24901 pcocn 24939 pcohtpylem 24941 pcopt 24944 pcopt2 24945 pcoass 24946 pcorevlem 24948 circcn 33843 tpr2tp 33909 sxbrsiga 34295 cvmliftlem8 35328 knoppcnlem10 36536 knoppcnlem11 36537 poimir 37693 broucube 37694 cnambfre 37708 reheibor 37879 rfcnpre1 45056 fcnre 45062 refsumcn 45067 refsum2cnlem1 45074 climreeq 45653 islptre 45659 icccncfext 45925 stoweidlem47 46085 dirkercncflem4 46144 dirkercncf 46145 fourierdlem62 46206 |
| Copyright terms: Public domain | W3C validator |