Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > retopon | Structured version Visualization version GIF version |
Description: The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
retopon | ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop 23934 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
2 | uniretop 23935 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
3 | 2 | toptopon 22075 | . 2 ⊢ ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
4 | 1, 3 | mpbi 229 | 1 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ran crn 5591 ‘cfv 6437 ℝcr 10879 (,)cioo 13088 topGenctg 17157 Topctop 22051 TopOnctopon 22068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-pre-lttri 10954 ax-pre-lttrn 10955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-1st 7840 df-2nd 7841 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-ioo 13092 df-topgen 17163 df-top 22052 df-topon 22069 df-bases 22105 |
This theorem is referenced by: xrtgioo 23978 reconnlem1 23998 reconn 24000 cnmpopc 24100 cnrehmeo 24125 bndth 24130 evth2 24132 htpycc 24152 pcocn 24189 pcohtpylem 24191 pcopt 24194 pcopt2 24195 pcoass 24196 pcorevlem 24198 circcn 31797 tpr2tp 31863 sxbrsiga 32266 cvmliftlem8 33263 knoppcnlem10 34691 knoppcnlem11 34692 poimir 35819 broucube 35820 cnambfre 35834 reheibor 36006 rfcnpre1 42569 fcnre 42575 refsumcn 42580 refsum2cnlem1 42587 climreeq 43161 islptre 43167 icccncfext 43435 stoweidlem47 43595 dirkercncflem4 43654 dirkercncf 43655 fourierdlem62 43716 |
Copyright terms: Public domain | W3C validator |