| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retopon | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| retopon | ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop 24698 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
| 2 | uniretop 24699 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 3 | 2 | toptopon 22853 | . 2 ⊢ ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ran crn 5655 ‘cfv 6530 ℝcr 11126 (,)cioo 13360 topGenctg 17449 Topctop 22829 TopOnctopon 22846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-ioo 13364 df-topgen 17455 df-top 22830 df-topon 22847 df-bases 22882 |
| This theorem is referenced by: xrtgioo 24744 reconnlem1 24764 reconn 24766 cnmpopc 24871 cnrehmeo 24900 cnrehmeoOLD 24901 bndth 24906 evth2 24908 htpycc 24928 pcocn 24966 pcohtpylem 24968 pcopt 24971 pcopt2 24972 pcoass 24973 pcorevlem 24975 circcn 33815 tpr2tp 33881 sxbrsiga 34268 cvmliftlem8 35260 knoppcnlem10 36466 knoppcnlem11 36467 poimir 37623 broucube 37624 cnambfre 37638 reheibor 37809 rfcnpre1 44991 fcnre 44997 refsumcn 45002 refsum2cnlem1 45009 climreeq 45590 islptre 45596 icccncfext 45864 stoweidlem47 46024 dirkercncflem4 46083 dirkercncf 46084 fourierdlem62 46145 |
| Copyright terms: Public domain | W3C validator |