| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retopon | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| retopon | ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop 24665 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
| 2 | uniretop 24666 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 3 | 2 | toptopon 22820 | . 2 ⊢ ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ran crn 5624 ‘cfv 6486 ℝcr 11027 (,)cioo 13266 topGenctg 17359 Topctop 22796 TopOnctopon 22813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-ioo 13270 df-topgen 17365 df-top 22797 df-topon 22814 df-bases 22849 |
| This theorem is referenced by: xrtgioo 24711 reconnlem1 24731 reconn 24733 cnmpopc 24838 cnrehmeo 24867 cnrehmeoOLD 24868 bndth 24873 evth2 24875 htpycc 24895 pcocn 24933 pcohtpylem 24935 pcopt 24938 pcopt2 24939 pcoass 24940 pcorevlem 24942 circcn 33807 tpr2tp 33873 sxbrsiga 34260 cvmliftlem8 35267 knoppcnlem10 36478 knoppcnlem11 36479 poimir 37635 broucube 37636 cnambfre 37650 reheibor 37821 rfcnpre1 45000 fcnre 45006 refsumcn 45011 refsum2cnlem1 45018 climreeq 45598 islptre 45604 icccncfext 45872 stoweidlem47 46032 dirkercncflem4 46091 dirkercncf 46092 fourierdlem62 46153 |
| Copyright terms: Public domain | W3C validator |