| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > retopon | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| retopon | ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop 24696 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
| 2 | uniretop 24697 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 3 | 2 | toptopon 22852 | . 2 ⊢ ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ran crn 5622 ‘cfv 6489 ℝcr 11016 (,)cioo 13252 topGenctg 17348 Topctop 22828 TopOnctopon 22845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-ioo 13256 df-topgen 17354 df-top 22829 df-topon 22846 df-bases 22881 |
| This theorem is referenced by: xrtgioo 24742 reconnlem1 24762 reconn 24764 cnmpopc 24869 cnrehmeo 24898 cnrehmeoOLD 24899 bndth 24904 evth2 24906 htpycc 24926 pcocn 24964 pcohtpylem 24966 pcopt 24969 pcopt2 24970 pcoass 24971 pcorevlem 24973 circcn 33923 tpr2tp 33989 sxbrsiga 34375 cvmliftlem8 35408 knoppcnlem10 36618 knoppcnlem11 36619 poimir 37766 broucube 37767 cnambfre 37781 reheibor 37952 rfcnpre1 45180 fcnre 45186 refsumcn 45191 refsum2cnlem1 45198 climreeq 45775 islptre 45781 icccncfext 46047 stoweidlem47 46207 dirkercncflem4 46266 dirkercncf 46267 fourierdlem62 46328 |
| Copyright terms: Public domain | W3C validator |