MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  retopon Structured version   Visualization version   GIF version

Theorem retopon 24673
Description: The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
retopon (topGen‘ran (,)) ∈ (TopOn‘ℝ)

Proof of Theorem retopon
StepHypRef Expression
1 retop 24671 . 2 (topGen‘ran (,)) ∈ Top
2 uniretop 24672 . . 3 ℝ = (topGen‘ran (,))
32toptopon 22827 . 2 ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ))
41, 3mpbi 230 1 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  ran crn 5612  cfv 6476  cr 11000  (,)cioo 13240  topGenctg 17336  Topctop 22803  TopOnctopon 22820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-ioo 13244  df-topgen 17342  df-top 22804  df-topon 22821  df-bases 22856
This theorem is referenced by:  xrtgioo  24717  reconnlem1  24737  reconn  24739  cnmpopc  24844  cnrehmeo  24873  cnrehmeoOLD  24874  bndth  24879  evth2  24881  htpycc  24901  pcocn  24939  pcohtpylem  24941  pcopt  24944  pcopt2  24945  pcoass  24946  pcorevlem  24948  circcn  33843  tpr2tp  33909  sxbrsiga  34295  cvmliftlem8  35328  knoppcnlem10  36536  knoppcnlem11  36537  poimir  37693  broucube  37694  cnambfre  37708  reheibor  37879  rfcnpre1  45056  fcnre  45062  refsumcn  45067  refsum2cnlem1  45074  climreeq  45653  islptre  45659  icccncfext  45925  stoweidlem47  46085  dirkercncflem4  46144  dirkercncf  46145  fourierdlem62  46206
  Copyright terms: Public domain W3C validator