Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > retopon | Structured version Visualization version GIF version |
Description: The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
retopon | ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop 23906 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
2 | uniretop 23907 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
3 | 2 | toptopon 22047 | . 2 ⊢ ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
4 | 1, 3 | mpbi 229 | 1 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 ran crn 5589 ‘cfv 6430 ℝcr 10854 (,)cioo 13061 topGenctg 17129 Topctop 22023 TopOnctopon 22040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-ioo 13065 df-topgen 17135 df-top 22024 df-topon 22041 df-bases 22077 |
This theorem is referenced by: xrtgioo 23950 reconnlem1 23970 reconn 23972 cnmpopc 24072 cnrehmeo 24097 bndth 24102 evth2 24104 htpycc 24124 pcocn 24161 pcohtpylem 24163 pcopt 24166 pcopt2 24167 pcoass 24168 pcorevlem 24170 circcn 31767 tpr2tp 31833 sxbrsiga 32236 cvmliftlem8 33233 knoppcnlem10 34661 knoppcnlem11 34662 poimir 35789 broucube 35790 cnambfre 35804 reheibor 35976 rfcnpre1 42515 fcnre 42521 refsumcn 42526 refsum2cnlem1 42533 climreeq 43108 islptre 43114 icccncfext 43382 stoweidlem47 43542 dirkercncflem4 43601 dirkercncf 43602 fourierdlem62 43663 |
Copyright terms: Public domain | W3C validator |