![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > retopon | Structured version Visualization version GIF version |
Description: The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
retopon | ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop 24285 | . 2 ⊢ (topGen‘ran (,)) ∈ Top | |
2 | uniretop 24286 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
3 | 2 | toptopon 22426 | . 2 ⊢ ((topGen‘ran (,)) ∈ Top ↔ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
4 | 1, 3 | mpbi 229 | 1 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ran crn 5677 ‘cfv 6543 ℝcr 11111 (,)cioo 13326 topGenctg 17385 Topctop 22402 TopOnctopon 22419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-ioo 13330 df-topgen 17391 df-top 22403 df-topon 22420 df-bases 22456 |
This theorem is referenced by: xrtgioo 24329 reconnlem1 24349 reconn 24351 cnmpopc 24451 cnrehmeo 24476 bndth 24481 evth2 24483 htpycc 24503 pcocn 24540 pcohtpylem 24542 pcopt 24545 pcopt2 24546 pcoass 24547 pcorevlem 24549 circcn 32887 tpr2tp 32953 sxbrsiga 33358 cvmliftlem8 34352 gg-cnrehmeo 35240 knoppcnlem10 35464 knoppcnlem11 35465 poimir 36607 broucube 36608 cnambfre 36622 reheibor 36793 rfcnpre1 43785 fcnre 43791 refsumcn 43796 refsum2cnlem1 43803 climreeq 44408 islptre 44414 icccncfext 44682 stoweidlem47 44842 dirkercncflem4 44901 dirkercncf 44902 fourierdlem62 44963 |
Copyright terms: Public domain | W3C validator |