| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxduhgrun | Structured version Visualization version GIF version | ||
| Description: The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 12-Dec-2020.) (Proof shortened by AV, 19-Feb-2021.) |
| Ref | Expression |
|---|---|
| vtxduhgrun.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vtxduhgrun.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| vtxduhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxduhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| vtxduhgrun.vu | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| vtxduhgrun.d | ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) |
| vtxduhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| vtxduhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| vtxduhgrun.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
| vtxduhgrun.u | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) |
| Ref | Expression |
|---|---|
| vtxduhgrun | ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxduhgrun.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | vtxduhgrun.j | . 2 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | vtxduhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | vtxduhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 5 | vtxduhgrun.vu | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
| 6 | vtxduhgrun.d | . 2 ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) | |
| 7 | vtxduhgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
| 8 | 1 | uhgrfun 28999 | . . 3 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → Fun 𝐼) |
| 10 | vtxduhgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ UHGraph) | |
| 11 | 2 | uhgrfun 28999 | . . 3 ⊢ (𝐻 ∈ UHGraph → Fun 𝐽) |
| 12 | 10, 11 | syl 17 | . 2 ⊢ (𝜑 → Fun 𝐽) |
| 13 | vtxduhgrun.n | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑉) | |
| 14 | vtxduhgrun.u | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) | |
| 15 | 1, 2, 3, 4, 5, 6, 9, 12, 13, 14 | vtxdun 29415 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3914 ∩ cin 3915 ∅c0 4298 dom cdm 5640 Fun wfun 6507 ‘cfv 6513 (class class class)co 7389 +𝑒 cxad 13076 Vtxcvtx 28929 iEdgciedg 28930 UHGraphcuhgr 28989 VtxDegcvtxdg 29399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-oadd 8440 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-xnn0 12522 df-z 12536 df-uz 12800 df-xadd 13079 df-hash 14302 df-uhgr 28991 df-vtxdg 29400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |