![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxduhgrun | Structured version Visualization version GIF version |
Description: The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 12-Dec-2020.) (Proof shortened by AV, 19-Feb-2021.) |
Ref | Expression |
---|---|
vtxduhgrun.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vtxduhgrun.j | ⊢ 𝐽 = (iEdg‘𝐻) |
vtxduhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxduhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
vtxduhgrun.vu | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
vtxduhgrun.d | ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) |
vtxduhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
vtxduhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
vtxduhgrun.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
vtxduhgrun.u | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) |
Ref | Expression |
---|---|
vtxduhgrun | ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxduhgrun.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | vtxduhgrun.j | . 2 ⊢ 𝐽 = (iEdg‘𝐻) | |
3 | vtxduhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | vtxduhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
5 | vtxduhgrun.vu | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
6 | vtxduhgrun.d | . 2 ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) | |
7 | vtxduhgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
8 | 1 | uhgrfun 29103 | . . 3 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → Fun 𝐼) |
10 | vtxduhgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ UHGraph) | |
11 | 2 | uhgrfun 29103 | . . 3 ⊢ (𝐻 ∈ UHGraph → Fun 𝐽) |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝜑 → Fun 𝐽) |
13 | vtxduhgrun.n | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑉) | |
14 | vtxduhgrun.u | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) | |
15 | 1, 2, 3, 4, 5, 6, 9, 12, 13, 14 | vtxdun 29519 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 dom cdm 5700 Fun wfun 6569 ‘cfv 6575 (class class class)co 7450 +𝑒 cxad 13175 Vtxcvtx 29033 iEdgciedg 29034 UHGraphcuhgr 29093 VtxDegcvtxdg 29503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-oadd 8528 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-dju 9972 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-n0 12556 df-xnn0 12628 df-z 12642 df-uz 12906 df-xadd 13178 df-hash 14382 df-uhgr 29095 df-vtxdg 29504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |