| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxduhgrun | Structured version Visualization version GIF version | ||
| Description: The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 12-Dec-2020.) (Proof shortened by AV, 19-Feb-2021.) |
| Ref | Expression |
|---|---|
| vtxduhgrun.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| vtxduhgrun.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| vtxduhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxduhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| vtxduhgrun.vu | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
| vtxduhgrun.d | ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) |
| vtxduhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
| vtxduhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
| vtxduhgrun.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
| vtxduhgrun.u | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) |
| Ref | Expression |
|---|---|
| vtxduhgrun | ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxduhgrun.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | vtxduhgrun.j | . 2 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 3 | vtxduhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | vtxduhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 5 | vtxduhgrun.vu | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
| 6 | vtxduhgrun.d | . 2 ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) | |
| 7 | vtxduhgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
| 8 | 1 | uhgrfun 29011 | . . 3 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → Fun 𝐼) |
| 10 | vtxduhgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ UHGraph) | |
| 11 | 2 | uhgrfun 29011 | . . 3 ⊢ (𝐻 ∈ UHGraph → Fun 𝐽) |
| 12 | 10, 11 | syl 17 | . 2 ⊢ (𝜑 → Fun 𝐽) |
| 13 | vtxduhgrun.n | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑉) | |
| 14 | vtxduhgrun.u | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) | |
| 15 | 1, 2, 3, 4, 5, 6, 9, 12, 13, 14 | vtxdun 29427 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 dom cdm 5665 Fun wfun 6535 ‘cfv 6541 (class class class)co 7413 +𝑒 cxad 13134 Vtxcvtx 28941 iEdgciedg 28942 UHGraphcuhgr 29001 VtxDegcvtxdg 29411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-xadd 13137 df-hash 14352 df-uhgr 29003 df-vtxdg 29412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |