![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxduhgrun | Structured version Visualization version GIF version |
Description: The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 21-Dec-2017.) (Revised by AV, 12-Dec-2020.) (Proof shortened by AV, 19-Feb-2021.) |
Ref | Expression |
---|---|
vtxduhgrun.i | ⊢ 𝐼 = (iEdg‘𝐺) |
vtxduhgrun.j | ⊢ 𝐽 = (iEdg‘𝐻) |
vtxduhgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxduhgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
vtxduhgrun.vu | ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) |
vtxduhgrun.d | ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) |
vtxduhgrun.g | ⊢ (𝜑 → 𝐺 ∈ UHGraph) |
vtxduhgrun.h | ⊢ (𝜑 → 𝐻 ∈ UHGraph) |
vtxduhgrun.n | ⊢ (𝜑 → 𝑁 ∈ 𝑉) |
vtxduhgrun.u | ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) |
Ref | Expression |
---|---|
vtxduhgrun | ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxduhgrun.i | . 2 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | vtxduhgrun.j | . 2 ⊢ 𝐽 = (iEdg‘𝐻) | |
3 | vtxduhgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | vtxduhgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
5 | vtxduhgrun.vu | . 2 ⊢ (𝜑 → (Vtx‘𝑈) = 𝑉) | |
6 | vtxduhgrun.d | . 2 ⊢ (𝜑 → (dom 𝐼 ∩ dom 𝐽) = ∅) | |
7 | vtxduhgrun.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ UHGraph) | |
8 | 1 | uhgrfun 26371 | . . 3 ⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → Fun 𝐼) |
10 | vtxduhgrun.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ UHGraph) | |
11 | 2 | uhgrfun 26371 | . . 3 ⊢ (𝐻 ∈ UHGraph → Fun 𝐽) |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝜑 → Fun 𝐽) |
13 | vtxduhgrun.n | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑉) | |
14 | vtxduhgrun.u | . 2 ⊢ (𝜑 → (iEdg‘𝑈) = (𝐼 ∪ 𝐽)) | |
15 | 1, 2, 3, 4, 5, 6, 9, 12, 13, 14 | vtxdun 26786 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑈)‘𝑁) = (((VtxDeg‘𝐺)‘𝑁) +𝑒 ((VtxDeg‘𝐻)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ∪ cun 3796 ∩ cin 3797 ∅c0 4146 dom cdm 5346 Fun wfun 6121 ‘cfv 6127 (class class class)co 6910 +𝑒 cxad 12237 Vtxcvtx 26301 iEdgciedg 26302 UHGraphcuhgr 26361 VtxDegcvtxdg 26770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-card 9085 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-n0 11626 df-xnn0 11698 df-z 11712 df-uz 11976 df-xadd 12240 df-hash 13418 df-uhgr 26363 df-vtxdg 26771 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |