MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfulm Structured version   Visualization version   GIF version

Theorem mbfulm 25470
Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 24737.) (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
mbfulm.z 𝑍 = (ℤ𝑀)
mbfulm.m (𝜑𝑀 ∈ ℤ)
mbfulm.f (𝜑𝐹:𝑍⟶MblFn)
mbfulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
mbfulm (𝜑𝐺 ∈ MblFn)

Proof of Theorem mbfulm
Dummy variables 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfulm.u . . . 4 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmcl 25445 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2syl 17 . . 3 (𝜑𝐺:𝑆⟶ℂ)
43feqmptd 6819 . 2 (𝜑𝐺 = (𝑧𝑆 ↦ (𝐺𝑧)))
5 mbfulm.z . . 3 𝑍 = (ℤ𝑀)
6 mbfulm.m . . 3 (𝜑𝑀 ∈ ℤ)
76adantr 480 . . . 4 ((𝜑𝑧𝑆) → 𝑀 ∈ ℤ)
8 mbfulm.f . . . . . . 7 (𝜑𝐹:𝑍⟶MblFn)
98ffnd 6585 . . . . . 6 (𝜑𝐹 Fn 𝑍)
10 ulmf2 25448 . . . . . 6 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
119, 1, 10syl2anc 583 . . . . 5 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1211adantr 480 . . . 4 ((𝜑𝑧𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
13 simpr 484 . . . 4 ((𝜑𝑧𝑆) → 𝑧𝑆)
145fvexi 6770 . . . . . 6 𝑍 ∈ V
1514mptex 7081 . . . . 5 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ∈ V
1615a1i 11 . . . 4 ((𝜑𝑧𝑆) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ∈ V)
17 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1817fveq1d 6758 . . . . . . 7 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑛)‘𝑧))
19 eqid 2738 . . . . . . 7 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))
20 fvex 6769 . . . . . . 7 ((𝐹𝑛)‘𝑧) ∈ V
2118, 19, 20fvmpt 6857 . . . . . 6 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))‘𝑛) = ((𝐹𝑛)‘𝑧))
2221eqcomd 2744 . . . . 5 (𝑛𝑍 → ((𝐹𝑛)‘𝑧) = ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))‘𝑛))
2322adantl 481 . . . 4 (((𝜑𝑧𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑧) = ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))‘𝑛))
241adantr 480 . . . 4 ((𝜑𝑧𝑆) → 𝐹(⇝𝑢𝑆)𝐺)
255, 7, 12, 13, 16, 23, 24ulmclm 25451 . . 3 ((𝜑𝑧𝑆) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
2611ffvelrnda 6943 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
27 elmapi 8595 . . . . . 6 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2826, 27syl 17 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑆⟶ℂ)
2928feqmptd 6819 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
308ffvelrnda 6943 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ MblFn)
3129, 30eqeltrrd 2840 . . 3 ((𝜑𝑘𝑍) → (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)) ∈ MblFn)
3228ffvelrnda 6943 . . . 4 (((𝜑𝑘𝑍) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
3332anasss 466 . . 3 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
345, 6, 25, 31, 33mbflim 24737 . 2 (𝜑 → (𝑧𝑆 ↦ (𝐺𝑧)) ∈ MblFn)
354, 34eqeltrd 2839 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  cmpt 5153   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800  cz 12249  cuz 12511  MblFncmbf 24683  𝑢culm 25440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688  df-ulm 25441
This theorem is referenced by:  iblulm  25471
  Copyright terms: Public domain W3C validator