MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfulm Structured version   Visualization version   GIF version

Theorem mbfulm 26450
Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25704.) (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
mbfulm.z 𝑍 = (ℤ𝑀)
mbfulm.m (𝜑𝑀 ∈ ℤ)
mbfulm.f (𝜑𝐹:𝑍⟶MblFn)
mbfulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
mbfulm (𝜑𝐺 ∈ MblFn)

Proof of Theorem mbfulm
Dummy variables 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfulm.u . . . 4 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmcl 26425 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2syl 17 . . 3 (𝜑𝐺:𝑆⟶ℂ)
43feqmptd 6976 . 2 (𝜑𝐺 = (𝑧𝑆 ↦ (𝐺𝑧)))
5 mbfulm.z . . 3 𝑍 = (ℤ𝑀)
6 mbfulm.m . . 3 (𝜑𝑀 ∈ ℤ)
76adantr 480 . . . 4 ((𝜑𝑧𝑆) → 𝑀 ∈ ℤ)
8 mbfulm.f . . . . . . 7 (𝜑𝐹:𝑍⟶MblFn)
98ffnd 6736 . . . . . 6 (𝜑𝐹 Fn 𝑍)
10 ulmf2 26428 . . . . . 6 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
119, 1, 10syl2anc 584 . . . . 5 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1211adantr 480 . . . 4 ((𝜑𝑧𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
13 simpr 484 . . . 4 ((𝜑𝑧𝑆) → 𝑧𝑆)
145fvexi 6919 . . . . . 6 𝑍 ∈ V
1514mptex 7244 . . . . 5 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ∈ V
1615a1i 11 . . . 4 ((𝜑𝑧𝑆) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ∈ V)
17 fveq2 6905 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1817fveq1d 6907 . . . . . . 7 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑛)‘𝑧))
19 eqid 2736 . . . . . . 7 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))
20 fvex 6918 . . . . . . 7 ((𝐹𝑛)‘𝑧) ∈ V
2118, 19, 20fvmpt 7015 . . . . . 6 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))‘𝑛) = ((𝐹𝑛)‘𝑧))
2221eqcomd 2742 . . . . 5 (𝑛𝑍 → ((𝐹𝑛)‘𝑧) = ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))‘𝑛))
2322adantl 481 . . . 4 (((𝜑𝑧𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑧) = ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))‘𝑛))
241adantr 480 . . . 4 ((𝜑𝑧𝑆) → 𝐹(⇝𝑢𝑆)𝐺)
255, 7, 12, 13, 16, 23, 24ulmclm 26431 . . 3 ((𝜑𝑧𝑆) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
2611ffvelcdmda 7103 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
27 elmapi 8890 . . . . . 6 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2826, 27syl 17 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑆⟶ℂ)
2928feqmptd 6976 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
308ffvelcdmda 7103 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ MblFn)
3129, 30eqeltrrd 2841 . . 3 ((𝜑𝑘𝑍) → (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)) ∈ MblFn)
3228ffvelcdmda 7103 . . . 4 (((𝜑𝑘𝑍) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
3332anasss 466 . . 3 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
345, 6, 25, 31, 33mbflim 25704 . 2 (𝜑 → (𝑧𝑆 ↦ (𝐺𝑧)) ∈ MblFn)
354, 34eqeltrd 2840 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479   class class class wbr 5142  cmpt 5224   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  m cmap 8867  cc 11154  cz 12615  cuz 12879  MblFncmbf 25650  𝑢culm 26420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xadd 13156  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-xmet 21358  df-met 21359  df-ovol 25500  df-vol 25501  df-mbf 25655  df-ulm 26421
This theorem is referenced by:  iblulm  26451
  Copyright terms: Public domain W3C validator