| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfulm | Structured version Visualization version GIF version | ||
| Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25569.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
| Ref | Expression |
|---|---|
| mbfulm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| mbfulm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| mbfulm.f | ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) |
| mbfulm.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Ref | Expression |
|---|---|
| mbfulm | ⊢ (𝜑 → 𝐺 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfulm.u | . . . 4 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
| 2 | ulmcl 26290 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| 4 | 3 | feqmptd 6929 | . 2 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝑆 ↦ (𝐺‘𝑧))) |
| 5 | mbfulm.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | mbfulm.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑀 ∈ ℤ) |
| 8 | mbfulm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) | |
| 9 | 8 | ffnd 6689 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 10 | ulmf2 26293 | . . . . . 6 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
| 11 | 9, 1, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑆) | |
| 14 | 5 | fvexi 6872 | . . . . . 6 ⊢ 𝑍 ∈ V |
| 15 | 14 | mptex 7197 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ∈ V |
| 16 | 15 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ∈ V) |
| 17 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) | |
| 18 | 17 | fveq1d 6860 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑛)‘𝑧)) |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) = (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) | |
| 20 | fvex 6871 | . . . . . . 7 ⊢ ((𝐹‘𝑛)‘𝑧) ∈ V | |
| 21 | 18, 19, 20 | fvmpt 6968 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧))‘𝑛) = ((𝐹‘𝑛)‘𝑧)) |
| 22 | 21 | eqcomd 2735 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 → ((𝐹‘𝑛)‘𝑧) = ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧))‘𝑛)) |
| 23 | 22 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑧) = ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧))‘𝑛)) |
| 24 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| 25 | 5, 7, 12, 13, 16, 23, 24 | ulmclm 26296 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
| 26 | 11 | ffvelcdmda 7056 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
| 27 | elmapi 8822 | . . . . . 6 ⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑆⟶ℂ) |
| 29 | 28 | feqmptd 6929 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧))) |
| 30 | 8 | ffvelcdmda 7056 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ MblFn) |
| 31 | 29, 30 | eqeltrrd 2829 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧)) ∈ MblFn) |
| 32 | 28 | ffvelcdmda 7056 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
| 33 | 32 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
| 34 | 5, 6, 25, 31, 33 | mbflim 25569 | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝑆 ↦ (𝐺‘𝑧)) ∈ MblFn) |
| 35 | 4, 34 | eqeltrd 2828 | 1 ⊢ (𝜑 → 𝐺 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℂcc 11066 ℤcz 12529 ℤ≥cuz 12793 MblFncmbf 25515 ⇝𝑢culm 26285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-xmet 21257 df-met 21258 df-ovol 25365 df-vol 25366 df-mbf 25520 df-ulm 26286 |
| This theorem is referenced by: iblulm 26316 |
| Copyright terms: Public domain | W3C validator |