| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfulm | Structured version Visualization version GIF version | ||
| Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25567.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
| Ref | Expression |
|---|---|
| mbfulm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| mbfulm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| mbfulm.f | ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) |
| mbfulm.u | ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) |
| Ref | Expression |
|---|---|
| mbfulm | ⊢ (𝜑 → 𝐺 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfulm.u | . . . 4 ⊢ (𝜑 → 𝐹(⇝𝑢‘𝑆)𝐺) | |
| 2 | ulmcl 26288 | . . . 4 ⊢ (𝐹(⇝𝑢‘𝑆)𝐺 → 𝐺:𝑆⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:𝑆⟶ℂ) |
| 4 | 3 | feqmptd 6891 | . 2 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝑆 ↦ (𝐺‘𝑧))) |
| 5 | mbfulm.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | mbfulm.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑀 ∈ ℤ) |
| 8 | mbfulm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶MblFn) | |
| 9 | 8 | ffnd 6653 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 10 | ulmf2 26291 | . . . . . 6 ⊢ ((𝐹 Fn 𝑍 ∧ 𝐹(⇝𝑢‘𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) | |
| 11 | 9, 1, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
| 13 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑆) | |
| 14 | 5 | fvexi 6836 | . . . . . 6 ⊢ 𝑍 ∈ V |
| 15 | 14 | mptex 7159 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ∈ V |
| 16 | 15 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ∈ V) |
| 17 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) | |
| 18 | 17 | fveq1d 6824 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘)‘𝑧) = ((𝐹‘𝑛)‘𝑧)) |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) = (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) | |
| 20 | fvex 6835 | . . . . . . 7 ⊢ ((𝐹‘𝑛)‘𝑧) ∈ V | |
| 21 | 18, 19, 20 | fvmpt 6930 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 → ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧))‘𝑛) = ((𝐹‘𝑛)‘𝑧)) |
| 22 | 21 | eqcomd 2735 | . . . . 5 ⊢ (𝑛 ∈ 𝑍 → ((𝐹‘𝑛)‘𝑧) = ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧))‘𝑛)) |
| 23 | 22 | adantl 481 | . . . 4 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑧) = ((𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧))‘𝑛)) |
| 24 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝐹(⇝𝑢‘𝑆)𝐺) |
| 25 | 5, 7, 12, 13, 16, 23, 24 | ulmclm 26294 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝑘 ∈ 𝑍 ↦ ((𝐹‘𝑘)‘𝑧)) ⇝ (𝐺‘𝑧)) |
| 26 | 11 | ffvelcdmda 7018 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
| 27 | elmapi 8776 | . . . . . 6 ⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘):𝑆⟶ℂ) |
| 29 | 28 | feqmptd 6891 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧))) |
| 30 | 8 | ffvelcdmda 7018 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ MblFn) |
| 31 | 29, 30 | eqeltrrd 2829 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧)) ∈ MblFn) |
| 32 | 28 | ffvelcdmda 7018 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
| 33 | 32 | anasss 466 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
| 34 | 5, 6, 25, 31, 33 | mbflim 25567 | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝑆 ↦ (𝐺‘𝑧)) ∈ MblFn) |
| 35 | 4, 34 | eqeltrd 2828 | 1 ⊢ (𝜑 → 𝐺 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 ↦ cmpt 5173 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 ℂcc 11007 ℤcz 12471 ℤ≥cuz 12735 MblFncmbf 25513 ⇝𝑢culm 26283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xadd 13015 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-xmet 21254 df-met 21255 df-ovol 25363 df-vol 25364 df-mbf 25518 df-ulm 26284 |
| This theorem is referenced by: iblulm 26314 |
| Copyright terms: Public domain | W3C validator |