MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfulm Structured version   Visualization version   GIF version

Theorem mbfulm 26313
Description: A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25567.) (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
mbfulm.z 𝑍 = (ℤ𝑀)
mbfulm.m (𝜑𝑀 ∈ ℤ)
mbfulm.f (𝜑𝐹:𝑍⟶MblFn)
mbfulm.u (𝜑𝐹(⇝𝑢𝑆)𝐺)
Assertion
Ref Expression
mbfulm (𝜑𝐺 ∈ MblFn)

Proof of Theorem mbfulm
Dummy variables 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfulm.u . . . 4 (𝜑𝐹(⇝𝑢𝑆)𝐺)
2 ulmcl 26288 . . . 4 (𝐹(⇝𝑢𝑆)𝐺𝐺:𝑆⟶ℂ)
31, 2syl 17 . . 3 (𝜑𝐺:𝑆⟶ℂ)
43feqmptd 6891 . 2 (𝜑𝐺 = (𝑧𝑆 ↦ (𝐺𝑧)))
5 mbfulm.z . . 3 𝑍 = (ℤ𝑀)
6 mbfulm.m . . 3 (𝜑𝑀 ∈ ℤ)
76adantr 480 . . . 4 ((𝜑𝑧𝑆) → 𝑀 ∈ ℤ)
8 mbfulm.f . . . . . . 7 (𝜑𝐹:𝑍⟶MblFn)
98ffnd 6653 . . . . . 6 (𝜑𝐹 Fn 𝑍)
10 ulmf2 26291 . . . . . 6 ((𝐹 Fn 𝑍𝐹(⇝𝑢𝑆)𝐺) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
119, 1, 10syl2anc 584 . . . . 5 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1211adantr 480 . . . 4 ((𝜑𝑧𝑆) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
13 simpr 484 . . . 4 ((𝜑𝑧𝑆) → 𝑧𝑆)
145fvexi 6836 . . . . . 6 𝑍 ∈ V
1514mptex 7159 . . . . 5 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ∈ V
1615a1i 11 . . . 4 ((𝜑𝑧𝑆) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ∈ V)
17 fveq2 6822 . . . . . . . 8 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1817fveq1d 6824 . . . . . . 7 (𝑘 = 𝑛 → ((𝐹𝑘)‘𝑧) = ((𝐹𝑛)‘𝑧))
19 eqid 2729 . . . . . . 7 (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))
20 fvex 6835 . . . . . . 7 ((𝐹𝑛)‘𝑧) ∈ V
2118, 19, 20fvmpt 6930 . . . . . 6 (𝑛𝑍 → ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))‘𝑛) = ((𝐹𝑛)‘𝑧))
2221eqcomd 2735 . . . . 5 (𝑛𝑍 → ((𝐹𝑛)‘𝑧) = ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))‘𝑛))
2322adantl 481 . . . 4 (((𝜑𝑧𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑧) = ((𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧))‘𝑛))
241adantr 480 . . . 4 ((𝜑𝑧𝑆) → 𝐹(⇝𝑢𝑆)𝐺)
255, 7, 12, 13, 16, 23, 24ulmclm 26294 . . 3 ((𝜑𝑧𝑆) → (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑧)) ⇝ (𝐺𝑧))
2611ffvelcdmda 7018 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
27 elmapi 8776 . . . . . 6 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2826, 27syl 17 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘):𝑆⟶ℂ)
2928feqmptd 6891 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
308ffvelcdmda 7018 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ MblFn)
3129, 30eqeltrrd 2829 . . 3 ((𝜑𝑘𝑍) → (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)) ∈ MblFn)
3228ffvelcdmda 7018 . . . 4 (((𝜑𝑘𝑍) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
3332anasss 466 . . 3 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
345, 6, 25, 31, 33mbflim 25567 . 2 (𝜑 → (𝑧𝑆 ↦ (𝐺𝑧)) ∈ MblFn)
354, 34eqeltrd 2828 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436   class class class wbr 5092  cmpt 5173   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  cc 11007  cz 12471  cuz 12735  MblFncmbf 25513  𝑢culm 26283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xadd 13015  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-xmet 21254  df-met 21255  df-ovol 25363  df-vol 25364  df-mbf 25518  df-ulm 26284
This theorem is referenced by:  iblulm  26314
  Copyright terms: Public domain W3C validator