Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limcmpt2 | Structured version Visualization version GIF version |
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcmpt2.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
limcmpt2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
limcmpt2.f | ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) |
limcmpt2.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
limcmpt2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
limcmpt2 | ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmpt2.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
2 | 1 | ssdifssd 4050 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
3 | limcmpt2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | 1, 3 | sseldd 3895 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | eldifsn 4680 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) | |
6 | limcmpt2.f | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) | |
7 | 5, 6 | sylan2b 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐷 ∈ ℂ) |
8 | eqid 2758 | . . 3 ⊢ (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | |
9 | limcmpt2.k | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
10 | 2, 4, 7, 8, 9 | limcmpt 24596 | . 2 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
11 | undif1 4375 | . . . . 5 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵}) | |
12 | 3 | snssd 4702 | . . . . . 6 ⊢ (𝜑 → {𝐵} ⊆ 𝐴) |
13 | ssequn2 4090 | . . . . . 6 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
14 | 12, 13 | sylib 221 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = 𝐴) |
15 | 11, 14 | syl5eq 2805 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
16 | 15 | mpteq1d 5125 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷))) |
17 | 15 | oveq2d 7172 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
18 | limcmpt2.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
19 | 17, 18 | eqtr4di 2811 | . . . . 5 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = 𝐽) |
20 | 19 | oveq1d 7171 | . . . 4 ⊢ (𝜑 → ((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾) = (𝐽 CnP 𝐾)) |
21 | 20 | fveq1d 6665 | . . 3 ⊢ (𝜑 → (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) = ((𝐽 CnP 𝐾)‘𝐵)) |
22 | 16, 21 | eleq12d 2846 | . 2 ⊢ (𝜑 → ((𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
23 | 10, 22 | bitrd 282 | 1 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∖ cdif 3857 ∪ cun 3858 ⊆ wss 3860 ifcif 4423 {csn 4525 ↦ cmpt 5116 ‘cfv 6340 (class class class)co 7156 ℂcc 10586 ↾t crest 16766 TopOpenctopn 16767 ℂfldccnfld 20180 CnP ccnp 21939 limℂ climc 24575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fi 8921 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-fz 12953 df-seq 13432 df-exp 13493 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-plusg 16650 df-mulr 16651 df-starv 16652 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-rest 16768 df-topn 16769 df-topgen 16789 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-cnfld 20181 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-cnp 21942 df-xms 23036 df-ms 23037 df-limc 24579 |
This theorem is referenced by: dvcnp 24632 |
Copyright terms: Public domain | W3C validator |