MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmpt2 Structured version   Visualization version   GIF version

Theorem limcmpt2 25837
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcmpt2.a (𝜑𝐴 ⊆ ℂ)
limcmpt2.b (𝜑𝐵𝐴)
limcmpt2.f ((𝜑 ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℂ)
limcmpt2.j 𝐽 = (𝐾t 𝐴)
limcmpt2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcmpt2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐽(𝑧)   𝐾(𝑧)

Proof of Theorem limcmpt2
StepHypRef Expression
1 limcmpt2.a . . . 4 (𝜑𝐴 ⊆ ℂ)
21ssdifssd 4122 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
3 limcmpt2.b . . . 4 (𝜑𝐵𝐴)
41, 3sseldd 3959 . . 3 (𝜑𝐵 ∈ ℂ)
5 eldifsn 4762 . . . 4 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴𝑧𝐵))
6 limcmpt2.f . . . 4 ((𝜑 ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℂ)
75, 6sylan2b 594 . . 3 ((𝜑𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐷 ∈ ℂ)
8 eqid 2735 . . 3 (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
9 limcmpt2.k . . 3 𝐾 = (TopOpen‘ℂfld)
102, 4, 7, 8, 9limcmpt 25836 . 2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵)))
11 undif1 4451 . . . . 5 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
123snssd 4785 . . . . . 6 (𝜑 → {𝐵} ⊆ 𝐴)
13 ssequn2 4164 . . . . . 6 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
1412, 13sylib 218 . . . . 5 (𝜑 → (𝐴 ∪ {𝐵}) = 𝐴)
1511, 14eqtrid 2782 . . . 4 (𝜑 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
1615mpteq1d 5210 . . 3 (𝜑 → (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) = (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)))
1715oveq2d 7421 . . . . . 6 (𝜑 → (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾t 𝐴))
18 limcmpt2.j . . . . . 6 𝐽 = (𝐾t 𝐴)
1917, 18eqtr4di 2788 . . . . 5 (𝜑 → (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = 𝐽)
2019oveq1d 7420 . . . 4 (𝜑 → ((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾) = (𝐽 CnP 𝐾))
2120fveq1d 6878 . . 3 (𝜑 → (((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) = ((𝐽 CnP 𝐾)‘𝐵))
2216, 21eleq12d 2828 . 2 (𝜑 → ((𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
2310, 22bitrd 279 1 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  cun 3924  wss 3926  ifcif 4500  {csn 4601  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  t crest 17434  TopOpenctopn 17435  fldccnfld 21315   CnP ccnp 23163   lim climc 25815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-rest 17436  df-topn 17437  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cnp 23166  df-xms 24259  df-ms 24260  df-limc 25819
This theorem is referenced by:  dvcnp  25872
  Copyright terms: Public domain W3C validator