| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limcmpt2 | Structured version Visualization version GIF version | ||
| Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcmpt2.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| limcmpt2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| limcmpt2.f | ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) |
| limcmpt2.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
| limcmpt2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| limcmpt2 | ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcmpt2.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 2 | 1 | ssdifssd 4147 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
| 3 | limcmpt2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 4 | 1, 3 | sseldd 3984 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 5 | eldifsn 4786 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) | |
| 6 | limcmpt2.f | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) | |
| 7 | 5, 6 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐷 ∈ ℂ) |
| 8 | eqid 2737 | . . 3 ⊢ (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | |
| 9 | limcmpt2.k | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 10 | 2, 4, 7, 8, 9 | limcmpt 25918 | . 2 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
| 11 | undif1 4476 | . . . . 5 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵}) | |
| 12 | 3 | snssd 4809 | . . . . . 6 ⊢ (𝜑 → {𝐵} ⊆ 𝐴) |
| 13 | ssequn2 4189 | . . . . . 6 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
| 14 | 12, 13 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = 𝐴) |
| 15 | 11, 14 | eqtrid 2789 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| 16 | 15 | mpteq1d 5237 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷))) |
| 17 | 15 | oveq2d 7447 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
| 18 | limcmpt2.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
| 19 | 17, 18 | eqtr4di 2795 | . . . . 5 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = 𝐽) |
| 20 | 19 | oveq1d 7446 | . . . 4 ⊢ (𝜑 → ((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾) = (𝐽 CnP 𝐾)) |
| 21 | 20 | fveq1d 6908 | . . 3 ⊢ (𝜑 → (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) = ((𝐽 CnP 𝐾)‘𝐵)) |
| 22 | 16, 21 | eleq12d 2835 | . 2 ⊢ (𝜑 → ((𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| 23 | 10, 22 | bitrd 279 | 1 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 ∪ cun 3949 ⊆ wss 3951 ifcif 4525 {csn 4626 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ↾t crest 17465 TopOpenctopn 17466 ℂfldccnfld 21364 CnP ccnp 23233 limℂ climc 25897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-fz 13548 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-rest 17467 df-topn 17468 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cnp 23236 df-xms 24330 df-ms 24331 df-limc 25901 |
| This theorem is referenced by: dvcnp 25954 |
| Copyright terms: Public domain | W3C validator |