MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcmpt2 Structured version   Visualization version   GIF version

Theorem limcmpt2 25833
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcmpt2.a (𝜑𝐴 ⊆ ℂ)
limcmpt2.b (𝜑𝐵𝐴)
limcmpt2.f ((𝜑 ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℂ)
limcmpt2.j 𝐽 = (𝐾t 𝐴)
limcmpt2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
limcmpt2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐶   𝜑,𝑧
Allowed substitution hints:   𝐷(𝑧)   𝐽(𝑧)   𝐾(𝑧)

Proof of Theorem limcmpt2
StepHypRef Expression
1 limcmpt2.a . . . 4 (𝜑𝐴 ⊆ ℂ)
21ssdifssd 4143 . . 3 (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ)
3 limcmpt2.b . . . 4 (𝜑𝐵𝐴)
41, 3sseldd 3983 . . 3 (𝜑𝐵 ∈ ℂ)
5 eldifsn 4795 . . . 4 (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧𝐴𝑧𝐵))
6 limcmpt2.f . . . 4 ((𝜑 ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℂ)
75, 6sylan2b 592 . . 3 ((𝜑𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐷 ∈ ℂ)
8 eqid 2728 . . 3 (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵}))
9 limcmpt2.k . . 3 𝐾 = (TopOpen‘ℂfld)
102, 4, 7, 8, 9limcmpt 25832 . 2 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵)))
11 undif1 4479 . . . . 5 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵})
123snssd 4817 . . . . . 6 (𝜑 → {𝐵} ⊆ 𝐴)
13 ssequn2 4185 . . . . . 6 ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴)
1412, 13sylib 217 . . . . 5 (𝜑 → (𝐴 ∪ {𝐵}) = 𝐴)
1511, 14eqtrid 2780 . . . 4 (𝜑 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴)
1615mpteq1d 5247 . . 3 (𝜑 → (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) = (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)))
1715oveq2d 7442 . . . . . 6 (𝜑 → (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾t 𝐴))
18 limcmpt2.j . . . . . 6 𝐽 = (𝐾t 𝐴)
1917, 18eqtr4di 2786 . . . . 5 (𝜑 → (𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = 𝐽)
2019oveq1d 7441 . . . 4 (𝜑 → ((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾) = (𝐽 CnP 𝐾))
2120fveq1d 6904 . . 3 (𝜑 → (((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) = ((𝐽 CnP 𝐾)‘𝐵))
2216, 21eleq12d 2823 . 2 (𝜑 → ((𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
2310, 22bitrd 278 1 (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) lim 𝐵) ↔ (𝑧𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  cdif 3946  cun 3947  wss 3949  ifcif 4532  {csn 4632  cmpt 5235  cfv 6553  (class class class)co 7426  cc 11144  t crest 17409  TopOpenctopn 17410  fldccnfld 21286   CnP ccnp 23149   lim climc 25811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fi 9442  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-fz 13525  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-starv 17255  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-rest 17411  df-topn 17412  df-topgen 17432  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cnp 23152  df-xms 24246  df-ms 24247  df-limc 25815
This theorem is referenced by:  dvcnp  25868
  Copyright terms: Public domain W3C validator