Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limcmpt2 | Structured version Visualization version GIF version |
Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcmpt2.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
limcmpt2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
limcmpt2.f | ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) |
limcmpt2.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
limcmpt2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
limcmpt2 | ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmpt2.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
2 | 1 | ssdifssd 4077 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
3 | limcmpt2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | 1, 3 | sseldd 3922 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | eldifsn 4720 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) | |
6 | limcmpt2.f | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) | |
7 | 5, 6 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐷 ∈ ℂ) |
8 | eqid 2738 | . . 3 ⊢ (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | |
9 | limcmpt2.k | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
10 | 2, 4, 7, 8, 9 | limcmpt 25047 | . 2 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
11 | undif1 4409 | . . . . 5 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵}) | |
12 | 3 | snssd 4742 | . . . . . 6 ⊢ (𝜑 → {𝐵} ⊆ 𝐴) |
13 | ssequn2 4117 | . . . . . 6 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
14 | 12, 13 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = 𝐴) |
15 | 11, 14 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
16 | 15 | mpteq1d 5169 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷))) |
17 | 15 | oveq2d 7291 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
18 | limcmpt2.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
19 | 17, 18 | eqtr4di 2796 | . . . . 5 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = 𝐽) |
20 | 19 | oveq1d 7290 | . . . 4 ⊢ (𝜑 → ((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾) = (𝐽 CnP 𝐾)) |
21 | 20 | fveq1d 6776 | . . 3 ⊢ (𝜑 → (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) = ((𝐽 CnP 𝐾)‘𝐵)) |
22 | 16, 21 | eleq12d 2833 | . 2 ⊢ (𝜑 → ((𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
23 | 10, 22 | bitrd 278 | 1 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 ifcif 4459 {csn 4561 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ↾t crest 17131 TopOpenctopn 17132 ℂfldccnfld 20597 CnP ccnp 22376 limℂ climc 25026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-rest 17133 df-topn 17134 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cnp 22379 df-xms 23473 df-ms 23474 df-limc 25030 |
This theorem is referenced by: dvcnp 25083 |
Copyright terms: Public domain | W3C validator |