| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limcmpt2 | Structured version Visualization version GIF version | ||
| Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcmpt2.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| limcmpt2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| limcmpt2.f | ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) |
| limcmpt2.j | ⊢ 𝐽 = (𝐾 ↾t 𝐴) |
| limcmpt2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| limcmpt2 | ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcmpt2.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 2 | 1 | ssdifssd 4096 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝐵}) ⊆ ℂ) |
| 3 | limcmpt2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 4 | 1, 3 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 5 | eldifsn 4737 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) | |
| 6 | limcmpt2.f | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵)) → 𝐷 ∈ ℂ) | |
| 7 | 5, 6 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 ∖ {𝐵})) → 𝐷 ∈ ℂ) |
| 8 | eqid 2733 | . . 3 ⊢ (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) | |
| 9 | limcmpt2.k | . . 3 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 10 | 2, 4, 7, 8, 9 | limcmpt 25812 | . 2 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵))) |
| 11 | undif1 4425 | . . . . 5 ⊢ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = (𝐴 ∪ {𝐵}) | |
| 12 | 3 | snssd 4760 | . . . . . 6 ⊢ (𝜑 → {𝐵} ⊆ 𝐴) |
| 13 | ssequn2 4138 | . . . . . 6 ⊢ ({𝐵} ⊆ 𝐴 ↔ (𝐴 ∪ {𝐵}) = 𝐴) | |
| 14 | 12, 13 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = 𝐴) |
| 15 | 11, 14 | eqtrid 2780 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
| 16 | 15 | mpteq1d 5183 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) = (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷))) |
| 17 | 15 | oveq2d 7368 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = (𝐾 ↾t 𝐴)) |
| 18 | limcmpt2.j | . . . . . 6 ⊢ 𝐽 = (𝐾 ↾t 𝐴) | |
| 19 | 17, 18 | eqtr4di 2786 | . . . . 5 ⊢ (𝜑 → (𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) = 𝐽) |
| 20 | 19 | oveq1d 7367 | . . . 4 ⊢ (𝜑 → ((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾) = (𝐽 CnP 𝐾)) |
| 21 | 20 | fveq1d 6830 | . . 3 ⊢ (𝜑 → (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) = ((𝐽 CnP 𝐾)‘𝐵)) |
| 22 | 16, 21 | eleq12d 2827 | . 2 ⊢ (𝜑 → ((𝑧 ∈ ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ (((𝐾 ↾t ((𝐴 ∖ {𝐵}) ∪ {𝐵})) CnP 𝐾)‘𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| 23 | 10, 22 | bitrd 279 | 1 ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ (𝐴 ∖ {𝐵}) ↦ 𝐷) limℂ 𝐵) ↔ (𝑧 ∈ 𝐴 ↦ if(𝑧 = 𝐵, 𝐶, 𝐷)) ∈ ((𝐽 CnP 𝐾)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 ∪ cun 3896 ⊆ wss 3898 ifcif 4474 {csn 4575 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ↾t crest 17326 TopOpenctopn 17327 ℂfldccnfld 21293 CnP ccnp 23141 limℂ climc 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-rest 17328 df-topn 17329 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cnp 23144 df-xms 24236 df-ms 24237 df-limc 25795 |
| This theorem is referenced by: dvcnp 25848 |
| Copyright terms: Public domain | W3C validator |