Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxrep Structured version   Visualization version   GIF version

Theorem wfaxrep 44967
Description: The class of well-founded sets models the Axiom of Replacement ax-rep 5249. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in 𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxrep 𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑊
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wfaxrep
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 wfax.1 . 2 𝑊 = (𝑅1 “ On)
2 trwf 44932 . . . 4 Tr (𝑅1 “ On)
3 treq 5237 . . . 4 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3mpbiri 258 . . 3 (𝑊 = (𝑅1 “ On) → Tr 𝑊)
5 vex 3463 . . . . . . . . . 10 𝑓 ∈ V
65rnex 7904 . . . . . . . . 9 ran 𝑓 ∈ V
76r1elss 9818 . . . . . . . 8 (ran 𝑓 (𝑅1 “ On) ↔ ran 𝑓 (𝑅1 “ On))
87biimpri 228 . . . . . . 7 (ran 𝑓 (𝑅1 “ On) → ran 𝑓 (𝑅1 “ On))
91sseq2i 3988 . . . . . . 7 (ran 𝑓𝑊 ↔ ran 𝑓 (𝑅1 “ On))
101eleq2i 2826 . . . . . . 7 (ran 𝑓𝑊 ↔ ran 𝑓 (𝑅1 “ On))
118, 9, 103imtr4i 292 . . . . . 6 (ran 𝑓𝑊 → ran 𝑓𝑊)
12113ad2ant3 1135 . . . . 5 ((Fun 𝑓 ∧ dom 𝑓𝑊 ∧ ran 𝑓𝑊) → ran 𝑓𝑊)
1312ax-gen 1795 . . . 4 𝑓((Fun 𝑓 ∧ dom 𝑓𝑊 ∧ ran 𝑓𝑊) → ran 𝑓𝑊)
1413a1i 11 . . 3 (𝑊 = (𝑅1 “ On) → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑊 ∧ ran 𝑓𝑊) → ran 𝑓𝑊))
15 onwf 9842 . . . . 5 On ⊆ (𝑅1 “ On)
16 0elon 6407 . . . . 5 ∅ ∈ On
1715, 16sselii 3955 . . . 4 ∅ ∈ (𝑅1 “ On)
18 eleq2 2823 . . . 4 (𝑊 = (𝑅1 “ On) → (∅ ∈ 𝑊 ↔ ∅ ∈ (𝑅1 “ On)))
1917, 18mpbiri 258 . . 3 (𝑊 = (𝑅1 “ On) → ∅ ∈ 𝑊)
204, 14, 19modelaxrep 44954 . 2 (𝑊 = (𝑅1 “ On) → ∀𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑))))
211, 20ax-mp 5 1 𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926  c0 4308   cuni 4883  Tr wtr 5229  dom cdm 5654  ran crn 5655  cima 5657  Oncon0 6352  Fun wfun 6524  𝑅1cr1 9774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-en 8958  df-dom 8959  df-sdom 8960  df-r1 9776  df-rank 9777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator