Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxrep Structured version   Visualization version   GIF version

Theorem wfaxrep 44991
Description: The class of well-founded sets models the Axiom of Replacement ax-rep 5237. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in 𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxrep 𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑊
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wfaxrep
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 wfax.1 . 2 𝑊 = (𝑅1 “ On)
2 trwf 44956 . . . 4 Tr (𝑅1 “ On)
3 treq 5225 . . . 4 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3mpbiri 258 . . 3 (𝑊 = (𝑅1 “ On) → Tr 𝑊)
5 vex 3454 . . . . . . . . . 10 𝑓 ∈ V
65rnex 7889 . . . . . . . . 9 ran 𝑓 ∈ V
76r1elss 9766 . . . . . . . 8 (ran 𝑓 (𝑅1 “ On) ↔ ran 𝑓 (𝑅1 “ On))
87biimpri 228 . . . . . . 7 (ran 𝑓 (𝑅1 “ On) → ran 𝑓 (𝑅1 “ On))
91sseq2i 3979 . . . . . . 7 (ran 𝑓𝑊 ↔ ran 𝑓 (𝑅1 “ On))
101eleq2i 2821 . . . . . . 7 (ran 𝑓𝑊 ↔ ran 𝑓 (𝑅1 “ On))
118, 9, 103imtr4i 292 . . . . . 6 (ran 𝑓𝑊 → ran 𝑓𝑊)
12113ad2ant3 1135 . . . . 5 ((Fun 𝑓 ∧ dom 𝑓𝑊 ∧ ran 𝑓𝑊) → ran 𝑓𝑊)
1312ax-gen 1795 . . . 4 𝑓((Fun 𝑓 ∧ dom 𝑓𝑊 ∧ ran 𝑓𝑊) → ran 𝑓𝑊)
1413a1i 11 . . 3 (𝑊 = (𝑅1 “ On) → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑊 ∧ ran 𝑓𝑊) → ran 𝑓𝑊))
15 onwf 9790 . . . . 5 On ⊆ (𝑅1 “ On)
16 0elon 6390 . . . . 5 ∅ ∈ On
1715, 16sselii 3946 . . . 4 ∅ ∈ (𝑅1 “ On)
18 eleq2 2818 . . . 4 (𝑊 = (𝑅1 “ On) → (∅ ∈ 𝑊 ↔ ∅ ∈ (𝑅1 “ On)))
1917, 18mpbiri 258 . . 3 (𝑊 = (𝑅1 “ On) → ∅ ∈ 𝑊)
204, 14, 19modelaxrep 44978 . 2 (𝑊 = (𝑅1 “ On) → ∀𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑))))
211, 20ax-mp 5 1 𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  c0 4299   cuni 4874  Tr wtr 5217  dom cdm 5641  ran crn 5642  cima 5644  Oncon0 6335  Fun wfun 6508  𝑅1cr1 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-en 8922  df-dom 8923  df-sdom 8924  df-r1 9724  df-rank 9725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator