Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxrep Structured version   Visualization version   GIF version

Theorem wfaxrep 45092
Description: The class of well-founded sets models the Axiom of Replacement ax-rep 5219. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in 𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxrep 𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑊
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem wfaxrep
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 wfax.1 . 2 𝑊 = (𝑅1 “ On)
2 trwf 45057 . . . 4 Tr (𝑅1 “ On)
3 treq 5207 . . . 4 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3mpbiri 258 . . 3 (𝑊 = (𝑅1 “ On) → Tr 𝑊)
5 vex 3440 . . . . . . . . . 10 𝑓 ∈ V
65rnex 7846 . . . . . . . . 9 ran 𝑓 ∈ V
76r1elss 9705 . . . . . . . 8 (ran 𝑓 (𝑅1 “ On) ↔ ran 𝑓 (𝑅1 “ On))
87biimpri 228 . . . . . . 7 (ran 𝑓 (𝑅1 “ On) → ran 𝑓 (𝑅1 “ On))
91sseq2i 3959 . . . . . . 7 (ran 𝑓𝑊 ↔ ran 𝑓 (𝑅1 “ On))
101eleq2i 2823 . . . . . . 7 (ran 𝑓𝑊 ↔ ran 𝑓 (𝑅1 “ On))
118, 9, 103imtr4i 292 . . . . . 6 (ran 𝑓𝑊 → ran 𝑓𝑊)
12113ad2ant3 1135 . . . . 5 ((Fun 𝑓 ∧ dom 𝑓𝑊 ∧ ran 𝑓𝑊) → ran 𝑓𝑊)
1312ax-gen 1796 . . . 4 𝑓((Fun 𝑓 ∧ dom 𝑓𝑊 ∧ ran 𝑓𝑊) → ran 𝑓𝑊)
1413a1i 11 . . 3 (𝑊 = (𝑅1 “ On) → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑊 ∧ ran 𝑓𝑊) → ran 𝑓𝑊))
15 onwf 9729 . . . . 5 On ⊆ (𝑅1 “ On)
16 0elon 6367 . . . . 5 ∅ ∈ On
1715, 16sselii 3926 . . . 4 ∅ ∈ (𝑅1 “ On)
18 eleq2 2820 . . . 4 (𝑊 = (𝑅1 “ On) → (∅ ∈ 𝑊 ↔ ∅ ∈ (𝑅1 “ On)))
1917, 18mpbiri 258 . . 3 (𝑊 = (𝑅1 “ On) → ∅ ∈ 𝑊)
204, 14, 19modelaxrep 45079 . 2 (𝑊 = (𝑅1 “ On) → ∀𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑))))
211, 20ax-mp 5 1 𝑥𝑊 (∀𝑤𝑊𝑦𝑊𝑧𝑊 (∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑦 ↔ ∃𝑤𝑊 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  c0 4282   cuni 4858  Tr wtr 5200  dom cdm 5619  ran crn 5620  cima 5622  Oncon0 6312  Fun wfun 6481  𝑅1cr1 9661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-en 8876  df-dom 8877  df-sdom 8878  df-r1 9663  df-rank 9664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator