| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxrep | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axiom of Replacement ax-rep 5229. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in ∀𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxrep | ⊢ ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfax.1 | . 2 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 2 | trwf 44942 | . . . 4 ⊢ Tr ∪ (𝑅1 “ On) | |
| 3 | treq 5217 | . . . 4 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On))) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑊 = ∪ (𝑅1 “ On) → Tr 𝑊) |
| 5 | vex 3448 | . . . . . . . . . 10 ⊢ 𝑓 ∈ V | |
| 6 | 5 | rnex 7866 | . . . . . . . . 9 ⊢ ran 𝑓 ∈ V |
| 7 | 6 | r1elss 9735 | . . . . . . . 8 ⊢ (ran 𝑓 ∈ ∪ (𝑅1 “ On) ↔ ran 𝑓 ⊆ ∪ (𝑅1 “ On)) |
| 8 | 7 | biimpri 228 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ ∪ (𝑅1 “ On) → ran 𝑓 ∈ ∪ (𝑅1 “ On)) |
| 9 | 1 | sseq2i 3973 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ 𝑊 ↔ ran 𝑓 ⊆ ∪ (𝑅1 “ On)) |
| 10 | 1 | eleq2i 2820 | . . . . . . 7 ⊢ (ran 𝑓 ∈ 𝑊 ↔ ran 𝑓 ∈ ∪ (𝑅1 “ On)) |
| 11 | 8, 9, 10 | 3imtr4i 292 | . . . . . 6 ⊢ (ran 𝑓 ⊆ 𝑊 → ran 𝑓 ∈ 𝑊) |
| 12 | 11 | 3ad2ant3 1135 | . . . . 5 ⊢ ((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑊 ∧ ran 𝑓 ⊆ 𝑊) → ran 𝑓 ∈ 𝑊) |
| 13 | 12 | ax-gen 1795 | . . . 4 ⊢ ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑊 ∧ ran 𝑓 ⊆ 𝑊) → ran 𝑓 ∈ 𝑊) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑊 = ∪ (𝑅1 “ On) → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑊 ∧ ran 𝑓 ⊆ 𝑊) → ran 𝑓 ∈ 𝑊)) |
| 15 | onwf 9759 | . . . . 5 ⊢ On ⊆ ∪ (𝑅1 “ On) | |
| 16 | 0elon 6375 | . . . . 5 ⊢ ∅ ∈ On | |
| 17 | 15, 16 | sselii 3940 | . . . 4 ⊢ ∅ ∈ ∪ (𝑅1 “ On) |
| 18 | eleq2 2817 | . . . 4 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (∅ ∈ 𝑊 ↔ ∅ ∈ ∪ (𝑅1 “ On))) | |
| 19 | 17, 18 | mpbiri 258 | . . 3 ⊢ (𝑊 = ∪ (𝑅1 “ On) → ∅ ∈ 𝑊) |
| 20 | 4, 14, 19 | modelaxrep 44964 | . 2 ⊢ (𝑊 = ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) |
| 21 | 1, 20 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ∅c0 4292 ∪ cuni 4867 Tr wtr 5209 dom cdm 5631 ran crn 5632 “ cima 5634 Oncon0 6320 Fun wfun 6493 𝑅1cr1 9691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-en 8896 df-dom 8897 df-sdom 8898 df-r1 9693 df-rank 9694 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |