| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxrep | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axiom of Replacement ax-rep 5219. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in ∀𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxrep | ⊢ ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfax.1 | . 2 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 2 | trwf 45057 | . . . 4 ⊢ Tr ∪ (𝑅1 “ On) | |
| 3 | treq 5207 | . . . 4 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On))) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑊 = ∪ (𝑅1 “ On) → Tr 𝑊) |
| 5 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑓 ∈ V | |
| 6 | 5 | rnex 7846 | . . . . . . . . 9 ⊢ ran 𝑓 ∈ V |
| 7 | 6 | r1elss 9705 | . . . . . . . 8 ⊢ (ran 𝑓 ∈ ∪ (𝑅1 “ On) ↔ ran 𝑓 ⊆ ∪ (𝑅1 “ On)) |
| 8 | 7 | biimpri 228 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ ∪ (𝑅1 “ On) → ran 𝑓 ∈ ∪ (𝑅1 “ On)) |
| 9 | 1 | sseq2i 3959 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ 𝑊 ↔ ran 𝑓 ⊆ ∪ (𝑅1 “ On)) |
| 10 | 1 | eleq2i 2823 | . . . . . . 7 ⊢ (ran 𝑓 ∈ 𝑊 ↔ ran 𝑓 ∈ ∪ (𝑅1 “ On)) |
| 11 | 8, 9, 10 | 3imtr4i 292 | . . . . . 6 ⊢ (ran 𝑓 ⊆ 𝑊 → ran 𝑓 ∈ 𝑊) |
| 12 | 11 | 3ad2ant3 1135 | . . . . 5 ⊢ ((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑊 ∧ ran 𝑓 ⊆ 𝑊) → ran 𝑓 ∈ 𝑊) |
| 13 | 12 | ax-gen 1796 | . . . 4 ⊢ ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑊 ∧ ran 𝑓 ⊆ 𝑊) → ran 𝑓 ∈ 𝑊) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑊 = ∪ (𝑅1 “ On) → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑊 ∧ ran 𝑓 ⊆ 𝑊) → ran 𝑓 ∈ 𝑊)) |
| 15 | onwf 9729 | . . . . 5 ⊢ On ⊆ ∪ (𝑅1 “ On) | |
| 16 | 0elon 6367 | . . . . 5 ⊢ ∅ ∈ On | |
| 17 | 15, 16 | sselii 3926 | . . . 4 ⊢ ∅ ∈ ∪ (𝑅1 “ On) |
| 18 | eleq2 2820 | . . . 4 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (∅ ∈ 𝑊 ↔ ∅ ∈ ∪ (𝑅1 “ On))) | |
| 19 | 17, 18 | mpbiri 258 | . . 3 ⊢ (𝑊 = ∪ (𝑅1 “ On) → ∅ ∈ 𝑊) |
| 20 | 4, 14, 19 | modelaxrep 45079 | . 2 ⊢ (𝑊 = ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) |
| 21 | 1, 20 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∅c0 4282 ∪ cuni 4858 Tr wtr 5200 dom cdm 5619 ran crn 5620 “ cima 5622 Oncon0 6312 Fun wfun 6481 𝑅1cr1 9661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-en 8876 df-dom 8877 df-sdom 8878 df-r1 9663 df-rank 9664 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |