| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxrep | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axiom of Replacement ax-rep 5214. Actually, our statement is stronger, since it is an instance of Replacement only when all quantifiers in ∀𝑦𝜑 are relativized to 𝑊. Essentially part of Corollary II.2.5 of [Kunen2] p. 112, but note that our Replacement is different from Kunen's. (Contributed by Eric Schmidt, 29-Sep-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxrep | ⊢ ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfax.1 | . 2 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 2 | trwf 44949 | . . . 4 ⊢ Tr ∪ (𝑅1 “ On) | |
| 3 | treq 5202 | . . . 4 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On))) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑊 = ∪ (𝑅1 “ On) → Tr 𝑊) |
| 5 | vex 3437 | . . . . . . . . . 10 ⊢ 𝑓 ∈ V | |
| 6 | 5 | rnex 7834 | . . . . . . . . 9 ⊢ ran 𝑓 ∈ V |
| 7 | 6 | r1elss 9690 | . . . . . . . 8 ⊢ (ran 𝑓 ∈ ∪ (𝑅1 “ On) ↔ ran 𝑓 ⊆ ∪ (𝑅1 “ On)) |
| 8 | 7 | biimpri 228 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ ∪ (𝑅1 “ On) → ran 𝑓 ∈ ∪ (𝑅1 “ On)) |
| 9 | 1 | sseq2i 3961 | . . . . . . 7 ⊢ (ran 𝑓 ⊆ 𝑊 ↔ ran 𝑓 ⊆ ∪ (𝑅1 “ On)) |
| 10 | 1 | eleq2i 2820 | . . . . . . 7 ⊢ (ran 𝑓 ∈ 𝑊 ↔ ran 𝑓 ∈ ∪ (𝑅1 “ On)) |
| 11 | 8, 9, 10 | 3imtr4i 292 | . . . . . 6 ⊢ (ran 𝑓 ⊆ 𝑊 → ran 𝑓 ∈ 𝑊) |
| 12 | 11 | 3ad2ant3 1135 | . . . . 5 ⊢ ((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑊 ∧ ran 𝑓 ⊆ 𝑊) → ran 𝑓 ∈ 𝑊) |
| 13 | 12 | ax-gen 1795 | . . . 4 ⊢ ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑊 ∧ ran 𝑓 ⊆ 𝑊) → ran 𝑓 ∈ 𝑊) |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑊 = ∪ (𝑅1 “ On) → ∀𝑓((Fun 𝑓 ∧ dom 𝑓 ∈ 𝑊 ∧ ran 𝑓 ⊆ 𝑊) → ran 𝑓 ∈ 𝑊)) |
| 15 | onwf 9714 | . . . . 5 ⊢ On ⊆ ∪ (𝑅1 “ On) | |
| 16 | 0elon 6356 | . . . . 5 ⊢ ∅ ∈ On | |
| 17 | 15, 16 | sselii 3928 | . . . 4 ⊢ ∅ ∈ ∪ (𝑅1 “ On) |
| 18 | eleq2 2817 | . . . 4 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (∅ ∈ 𝑊 ↔ ∅ ∈ ∪ (𝑅1 “ On))) | |
| 19 | 17, 18 | mpbiri 258 | . . 3 ⊢ (𝑊 = ∪ (𝑅1 “ On) → ∅ ∈ 𝑊) |
| 20 | 4, 14, 19 | modelaxrep 44971 | . 2 ⊢ (𝑊 = ∪ (𝑅1 “ On) → ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) |
| 21 | 1, 20 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ 𝑊 (∀𝑤 ∈ 𝑊 ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑊 (𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3899 ∅c0 4280 ∪ cuni 4856 Tr wtr 5195 dom cdm 5613 ran crn 5614 “ cima 5616 Oncon0 6301 Fun wfun 6470 𝑅1cr1 9646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7343 df-om 7791 df-2nd 7916 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-en 8864 df-dom 8865 df-sdom 8866 df-r1 9648 df-rank 9649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |