Proof of Theorem wlksoneq1eq2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . . 3
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) | 
| 2 | 1 | wlkonprop 29676 | . 2
⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | 
| 3 | 1 | wlkonprop 29676 | . 2
⊢ (𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃 → ((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷))) | 
| 4 |  | simp2 1138 | . . . . . . . . . 10
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘0) = 𝐴) | 
| 5 | 4 | eqcomd 2743 | . . . . . . . . 9
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → 𝐴 = (𝑃‘0)) | 
| 6 |  | simp2 1138 | . . . . . . . . 9
⊢ ((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷) → (𝑃‘0) = 𝐶) | 
| 7 | 5, 6 | sylan9eqr 2799 | . . . . . . . 8
⊢ (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → 𝐴 = 𝐶) | 
| 8 |  | simp3 1139 | . . . . . . . . . . 11
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘(♯‘𝐹)) = 𝐵) | 
| 9 | 8 | eqcomd 2743 | . . . . . . . . . 10
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → 𝐵 = (𝑃‘(♯‘𝐹))) | 
| 10 | 9 | adantl 481 | . . . . . . . . 9
⊢ (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → 𝐵 = (𝑃‘(♯‘𝐹))) | 
| 11 |  | wlklenvm1 29640 | . . . . . . . . . . . 12
⊢ (𝐻(Walks‘𝐺)𝑃 → (♯‘𝐻) = ((♯‘𝑃) − 1)) | 
| 12 |  | wlklenvm1 29640 | . . . . . . . . . . . . . . 15
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) = ((♯‘𝑃) − 1)) | 
| 13 |  | eqtr3 2763 | . . . . . . . . . . . . . . . . 17
⊢
(((♯‘𝐹)
= ((♯‘𝑃)
− 1) ∧ (♯‘𝐻) = ((♯‘𝑃) − 1)) → (♯‘𝐹) = (♯‘𝐻)) | 
| 14 | 13 | fveq2d 6910 | . . . . . . . . . . . . . . . 16
⊢
(((♯‘𝐹)
= ((♯‘𝑃)
− 1) ∧ (♯‘𝐻) = ((♯‘𝑃) − 1)) → (𝑃‘(♯‘𝐹)) = (𝑃‘(♯‘𝐻))) | 
| 15 | 14 | ex 412 | . . . . . . . . . . . . . . 15
⊢
((♯‘𝐹) =
((♯‘𝑃) −
1) → ((♯‘𝐻) = ((♯‘𝑃) − 1) → (𝑃‘(♯‘𝐹)) = (𝑃‘(♯‘𝐻)))) | 
| 16 | 12, 15 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐻) = ((♯‘𝑃) − 1) → (𝑃‘(♯‘𝐹)) = (𝑃‘(♯‘𝐻)))) | 
| 17 | 16 | 3ad2ant1 1134 | . . . . . . . . . . . . 13
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐻) = ((♯‘𝑃) − 1) → (𝑃‘(♯‘𝐹)) = (𝑃‘(♯‘𝐻)))) | 
| 18 | 17 | com12 32 | . . . . . . . . . . . 12
⊢
((♯‘𝐻) =
((♯‘𝑃) −
1) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘(♯‘𝐹)) = (𝑃‘(♯‘𝐻)))) | 
| 19 | 11, 18 | syl 17 | . . . . . . . . . . 11
⊢ (𝐻(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘(♯‘𝐹)) = (𝑃‘(♯‘𝐻)))) | 
| 20 | 19 | 3ad2ant1 1134 | . . . . . . . . . 10
⊢ ((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘(♯‘𝐹)) = (𝑃‘(♯‘𝐻)))) | 
| 21 | 20 | imp 406 | . . . . . . . . 9
⊢ (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝑃‘(♯‘𝐹)) = (𝑃‘(♯‘𝐻))) | 
| 22 |  | simpl3 1194 | . . . . . . . . 9
⊢ (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝑃‘(♯‘𝐻)) = 𝐷) | 
| 23 | 10, 21, 22 | 3eqtrd 2781 | . . . . . . . 8
⊢ (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → 𝐵 = 𝐷) | 
| 24 | 7, 23 | jca 511 | . . . . . . 7
⊢ (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 25 | 24 | ex 412 | . . . . . 6
⊢ ((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 26 | 25 | 3ad2ant3 1136 | . . . . 5
⊢ (((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷)) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 27 | 26 | com12 32 | . . . 4
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 28 | 27 | 3ad2ant3 1136 | . . 3
⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | 
| 29 | 28 | imp 406 | . 2
⊢ ((((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ ((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(♯‘𝐻)) = 𝐷))) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | 
| 30 | 2, 3, 29 | syl2an 596 | 1
⊢ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |