MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcl Structured version   Visualization version   GIF version

Theorem xaddcl 12902
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddcl ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)

Proof of Theorem xaddcl
StepHypRef Expression
1 xaddf 12887 . 2 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
21fovcl 7380 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  (class class class)co 7255  *cxr 10939   +𝑒 cxad 12775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addrcl 10863  ax-rnegex 10873  ax-cnre 10875
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-pnf 10942  df-mnf 10943  df-xr 10944  df-xadd 12778
This theorem is referenced by:  xaddass  12912  xaddass2  12913  xleadd1a  12916  xleadd1  12918  xltadd1  12919  xaddge0  12921  xle2add  12922  xlt2add  12923  xsubge0  12924  xposdif  12925  xlesubadd  12926  xadddi  12958  xadddir  12959  xadddi2  12960  xadddi2r  12961  xaddcld  12964  ge0xaddcl  13123  xrsmgm  20545  xrs1mnd  20548  xrsds  20553  xrsxmet  23878  xrofsup  30992  supxrgelem  42766  caragenel2d  43960
  Copyright terms: Public domain W3C validator