MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcl Structured version   Visualization version   GIF version

Theorem xaddcl 13206
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddcl ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)

Proof of Theorem xaddcl
StepHypRef Expression
1 xaddf 13191 . 2 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
21fovcl 7520 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  (class class class)co 7390  *cxr 11214   +𝑒 cxad 13077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addrcl 11136  ax-rnegex 11146  ax-cnre 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-pnf 11217  df-mnf 11218  df-xr 11219  df-xadd 13080
This theorem is referenced by:  xaddass  13216  xaddass2  13217  xleadd1a  13220  xleadd1  13222  xltadd1  13223  xaddge0  13225  xle2add  13226  xlt2add  13227  xsubge0  13228  xposdif  13229  xlesubadd  13230  xadddi  13262  xadddir  13263  xadddi2  13264  xadddi2r  13265  xaddcld  13268  ge0xaddcl  13430  xrsmgm  21325  xrs1mnd  21328  xrsds  21333  xrsxmet  24705  xrofsup  32697  supxrgelem  45340  caragenel2d  46537
  Copyright terms: Public domain W3C validator