| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddcl | Structured version Visualization version GIF version | ||
| Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddcl | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xaddf 13123 | . 2 ⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | |
| 2 | 1 | fovcl 7474 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 (class class class)co 7346 ℝ*cxr 11145 +𝑒 cxad 13009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-pnf 11148 df-mnf 11149 df-xr 11150 df-xadd 13012 |
| This theorem is referenced by: xaddass 13148 xaddass2 13149 xleadd1a 13152 xleadd1 13154 xltadd1 13155 xaddge0 13157 xle2add 13158 xlt2add 13159 xsubge0 13160 xposdif 13161 xlesubadd 13162 xadddi 13194 xadddir 13195 xadddi2 13196 xadddi2r 13197 xaddcld 13200 ge0xaddcl 13362 xrsmgm 21343 xrsds 21346 xrs1mnd 21377 xrsxmet 24725 xrofsup 32750 supxrgelem 45446 caragenel2d 46640 |
| Copyright terms: Public domain | W3C validator |