MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddcl Structured version   Visualization version   GIF version

Theorem xaddcl 12318
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddcl ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)

Proof of Theorem xaddcl
StepHypRef Expression
1 xaddf 12303 . 2 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
21fovcl 7000 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wcel 2157  (class class class)co 6879  *cxr 10363   +𝑒 cxad 12190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-1cn 10283  ax-addrcl 10286  ax-rnegex 10296  ax-cnre 10298
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-fv 6110  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-1st 7402  df-2nd 7403  df-pnf 10366  df-mnf 10367  df-xr 10368  df-xadd 12193
This theorem is referenced by:  xaddass  12327  xaddass2  12328  xleadd1a  12331  xleadd1  12333  xltadd1  12334  xaddge0  12336  xle2add  12337  xlt2add  12338  xsubge0  12339  xposdif  12340  xlesubadd  12341  xadddi  12373  xadddir  12374  xadddi2  12375  xadddi2r  12376  xaddcld  12379  ge0xaddcl  12536  xrsmgm  20102  xrs1mnd  20105  xrsds  20110  xrsxmet  22939  xrofsup  30050  supxrgelem  40292  caragenel2d  41487
  Copyright terms: Public domain W3C validator