MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrletr Structured version   Visualization version   GIF version

Theorem xrletr 13083
Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrletr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem xrletr
StepHypRef Expression
1 xrleloe 13069 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1131 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
32adantr 482 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
4 xrlelttr 13081 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
5 xrltle 13074 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶𝐴𝐶))
653adant2 1132 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐶𝐴𝐶))
74, 6syld 47 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴𝐶))
87expdimp 454 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 < 𝐶𝐴𝐶))
9 breq2 5110 . . . . . 6 (𝐵 = 𝐶 → (𝐴𝐵𝐴𝐶))
109biimpcd 249 . . . . 5 (𝐴𝐵 → (𝐵 = 𝐶𝐴𝐶))
1110adantl 483 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵 = 𝐶𝐴𝐶))
128, 11jaod 858 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → ((𝐵 < 𝐶𝐵 = 𝐶) → 𝐴𝐶))
133, 12sylbid 239 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝐴𝐵) → (𝐵𝐶𝐴𝐶))
1413expimpd 455 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5106  *cxr 11193   < clt 11194  cle 11195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-pre-lttri 11130  ax-pre-lttrn 11131
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200
This theorem is referenced by:  xrletrd  13087  xrmaxle  13108  xrlemin  13109  xralrple  13130  xle2add  13184  icc0  13318  iccss  13338  icossico  13340  iccss2  13341  iccssico  13342  icoun  13398  snunico  13402  snunioc  13403  limsupgord  15360  limsupgre  15369  limsupbnd1  15370  limsupbnd2  15371  ramtlecl  16877  letsr  18487  leordtval2  22579  lecldbas  22586  imasdsf1olem  23742  stdbdxmet  23887  ovolmge0  24857  itg2le  25120  itg2seq  25123  plypf1  25589  pntleml  26975  ewlkle  28595  upgrewlkle2  28596  nmopge0  30895  nmfnge0  30911  xrstos  31919  xrge0omnd  31968  elicc3  34835  tan2h  36116  mblfinlem3  36163  mblfinlem4  36164  itg2addnclem  36175  monoordxrv  43803  liminfgord  44081
  Copyright terms: Public domain W3C validator