ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geoisum1 Unicode version

Theorem geoisum1 12030
Description: The infinite sum of  A ^
1  +  A ^
2... is  ( A  / 
( 1  -  A
) ). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum1  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN  ( A ^ k )  =  ( A  /  (
1  -  A ) ) )
Distinct variable group:    A, k

Proof of Theorem geoisum1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nnuz 9758 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9473 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
1  e.  ZZ )
3 simpr 110 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  k  e.  NN )
4 simpll 527 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  A  e.  CC )
53nnnn0d 9422 . . . . 5  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  k  e.  NN0 )
64, 5expcld 10895 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( A ^
k )  e.  CC )
7 oveq2 6009 . . . . 5  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
8 eqid 2229 . . . . 5  |-  ( n  e.  NN  |->  ( A ^ n ) )  =  ( n  e.  NN  |->  ( A ^
n ) )
97, 8fvmptg 5710 . . . 4  |-  ( ( k  e.  NN  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e.  NN  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
103, 6, 9syl2anc 411 . . 3  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
11 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  A  e.  CC )
12 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( abs `  A
)  <  1 )
13 1nn0 9385 . . . . 5  |-  1  e.  NN0
1413a1i 9 . . . 4  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
1  e.  NN0 )
15 elnnuz 9759 . . . . 5  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
1615, 10sylan2br 288 . . . 4  |-  ( ( ( A  e.  CC  /\  ( abs `  A
)  <  1 )  /\  k  e.  (
ZZ>= `  1 ) )  ->  ( ( n  e.  NN  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
1711, 12, 14, 16geolim2 12023 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( A ^ n ) ) )  ~~>  ( ( A ^ 1 )  /  ( 1  -  A ) ) )
181, 2, 10, 6, 17isumclim 11932 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN  ( A ^ k )  =  ( ( A ^
1 )  /  (
1  -  A ) ) )
19 exp1 10767 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
2019adantr 276 . . 3  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( A ^ 1 )  =  A )
2120oveq1d 6016 . 2  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  -> 
( ( A ^
1 )  /  (
1  -  A ) )  =  ( A  /  ( 1  -  A ) ) )
2218, 21eqtrd 2262 1  |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN  ( A ^ k )  =  ( A  /  (
1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318  (class class class)co 6001   CCcc 7997   1c1 8000    < clt 8181    - cmin 8317    / cdiv 8819   NNcn 9110   NN0cn0 9369   ZZ>=cuz 9722   ^cexp 10760   abscabs 11508   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by:  geoisum1c  12031  geoihalfsum  12033
  Copyright terms: Public domain W3C validator