ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcn Unicode version

Theorem metcn 13507
Description: Two ways to say a mapping from metric  C to metric  D is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon"  y there is a positive "delta"  z such that a distance less than delta in  C maps to a distance less than epsilon in  D. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcn  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
Distinct variable groups:    x, w, y, z, F    w, J, x, y, z    w, K, x, y, z    w, X, x, y, z    w, Y, x, y, z    w, C, x, y, z    w, D, x, y, z

Proof of Theorem metcn
StepHypRef Expression
1 metcn.2 . . . 4  |-  J  =  ( MetOpen `  C )
21mopntopon 13436 . . 3  |-  ( C  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
3 metcn.4 . . . 4  |-  K  =  ( MetOpen `  D )
43mopntopon 13436 . . 3  |-  ( D  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
5 cncnp 13223 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
62, 4, 5syl2an 289 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
71, 3metcnp 13505 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  x  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
873expa 1203 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  x  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
98adantlr 477 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <-> 
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  <  z  -> 
( ( F `  x ) D ( F `  w ) )  <  y ) ) ) )
10 simplr 528 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  F : X
--> Y )
1110biantrurd 305 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
129, 11bitr4d 191 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) )
1312ralbidva 2471 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F : X --> Y )  -> 
( A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )  <->  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) )
1413pm5.32da 452 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
) )  ->  (
( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )
)  <->  ( F : X
--> Y  /\  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  <  z  ->  ( ( F `  x ) D ( F `  w ) )  <  y ) ) ) )
156, 14bitrd 188 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  < 
z  ->  ( ( F `  x ) D ( F `  w ) )  < 
y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454   class class class wbr 3998   -->wf 5204   ` cfv 5208  (class class class)co 5865    < clt 7966   RR+crp 9622   *Metcxmet 12973   MetOpencmopn 12978  TopOnctopon 13001    Cn ccn 13178    CnP ccnp 13179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-map 6640  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-xneg 9741  df-xadd 9742  df-seqfrec 10414  df-exp 10488  df-cj 10818  df-re 10819  df-im 10820  df-rsqrt 10974  df-abs 10975  df-topgen 12630  df-psmet 12980  df-xmet 12981  df-bl 12983  df-mopn 12984  df-top 12989  df-topon 13002  df-bases 13034  df-cn 13181  df-cnp 13182
This theorem is referenced by:  divcnap  13548  cncfmet  13572
  Copyright terms: Public domain W3C validator