ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsfac GIF version

Theorem dvdsfac 11880
Description: A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
Assertion
Ref Expression
dvdsfac ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))

Proof of Theorem dvdsfac
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5527 . . . . 5 (𝑥 = 𝐾 → (!‘𝑥) = (!‘𝐾))
21breq2d 4027 . . . 4 (𝑥 = 𝐾 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝐾)))
32imbi2d 230 . . 3 (𝑥 = 𝐾 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))))
4 fveq2 5527 . . . . 5 (𝑥 = 𝑦 → (!‘𝑥) = (!‘𝑦))
54breq2d 4027 . . . 4 (𝑥 = 𝑦 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑦)))
65imbi2d 230 . . 3 (𝑥 = 𝑦 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦))))
7 fveq2 5527 . . . . 5 (𝑥 = (𝑦 + 1) → (!‘𝑥) = (!‘(𝑦 + 1)))
87breq2d 4027 . . . 4 (𝑥 = (𝑦 + 1) → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘(𝑦 + 1))))
98imbi2d 230 . . 3 (𝑥 = (𝑦 + 1) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
10 fveq2 5527 . . . . 5 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1110breq2d 4027 . . . 4 (𝑥 = 𝑁 → (𝐾 ∥ (!‘𝑥) ↔ 𝐾 ∥ (!‘𝑁)))
1211imbi2d 230 . . 3 (𝑥 = 𝑁 → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑥)) ↔ (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁))))
13 nnm1nn0 9231 . . . . . . . 8 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
14 faccl 10729 . . . . . . . 8 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℕ)
1513, 14syl 14 . . . . . . 7 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℕ)
1615nnzd 9388 . . . . . 6 (𝐾 ∈ ℕ → (!‘(𝐾 − 1)) ∈ ℤ)
17 nnz 9286 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
18 dvdsmul2 11835 . . . . . 6 (((!‘(𝐾 − 1)) ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
1916, 17, 18syl2anc 411 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∥ ((!‘(𝐾 − 1)) · 𝐾))
20 facnn2 10728 . . . . 5 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
2119, 20breqtrrd 4043 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾))
2221a1i 9 . . 3 (𝐾 ∈ ℤ → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝐾)))
2317adantl 277 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
24 elnnuz 9578 . . . . . . . . . . . 12 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
25 uztrn 9558 . . . . . . . . . . . 12 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ‘1)) → 𝑦 ∈ (ℤ‘1))
2624, 25sylan2b 287 . . . . . . . . . . 11 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ (ℤ‘1))
27 elnnuz 9578 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↔ 𝑦 ∈ (ℤ‘1))
2826, 27sylibr 134 . . . . . . . . . 10 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ)
2928nnnn0d 9243 . . . . . . . . 9 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℕ0)
30 faccl 10729 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (!‘𝑦) ∈ ℕ)
3129, 30syl 14 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℕ)
3231nnzd 9388 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘𝑦) ∈ ℤ)
3328nnzd 9388 . . . . . . . 8 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → 𝑦 ∈ ℤ)
3433peano2zd 9392 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝑦 + 1) ∈ ℤ)
35 dvdsmultr1 11852 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (!‘𝑦) ∈ ℤ ∧ (𝑦 + 1) ∈ ℤ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
3623, 32, 34, 35syl3anc 1248 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
37 facp1 10724 . . . . . . . 8 (𝑦 ∈ ℕ0 → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3829, 37syl 14 . . . . . . 7 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (!‘(𝑦 + 1)) = ((!‘𝑦) · (𝑦 + 1)))
3938breq2d 4027 . . . . . 6 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘(𝑦 + 1)) ↔ 𝐾 ∥ ((!‘𝑦) · (𝑦 + 1))))
4036, 39sylibrd 169 . . . . 5 ((𝑦 ∈ (ℤ𝐾) ∧ 𝐾 ∈ ℕ) → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1))))
4140ex 115 . . . 4 (𝑦 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → (𝐾 ∥ (!‘𝑦) → 𝐾 ∥ (!‘(𝑦 + 1)))))
4241a2d 26 . . 3 (𝑦 ∈ (ℤ𝐾) → ((𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑦)) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘(𝑦 + 1)))))
433, 6, 9, 12, 22, 42uzind4 9602 . 2 (𝑁 ∈ (ℤ𝐾) → (𝐾 ∈ ℕ → 𝐾 ∥ (!‘𝑁)))
4443impcom 125 1 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∥ (!‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158   class class class wbr 4015  cfv 5228  (class class class)co 5888  1c1 7826   + caddc 7828   · cmul 7830  cmin 8142  cn 8933  0cn0 9190  cz 9267  cuz 9542  !cfa 10719  cdvds 11808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-seqfrec 10460  df-fac 10720  df-dvds 11809
This theorem is referenced by:  prmunb  12374
  Copyright terms: Public domain W3C validator