ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdneg GIF version

Theorem gcdneg 11966
Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcdneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))

Proof of Theorem gcdneg
StepHypRef Expression
1 oveq12 5878 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
21adantl 277 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
3 zcn 9247 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
43negeq0d 8250 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ -𝑁 = 0))
54anbi2d 464 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑀 = 0 ∧ -𝑁 = 0)))
65adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑀 = 0 ∧ -𝑁 = 0)))
7 oveq12 5878 . . . . . 6 ((𝑀 = 0 ∧ -𝑁 = 0) → (𝑀 gcd -𝑁) = (0 gcd 0))
86, 7syl6bi 163 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd -𝑁) = (0 gcd 0)))
98imp 124 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd -𝑁) = (0 gcd 0))
102, 9eqtr4d 2213 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
11 gcddvds 11947 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
12 gcdcl 11950 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
1312nn0zd 9362 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
14 dvdsnegb 11799 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ -𝑁))
1513, 14sylancom 420 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ -𝑁))
1615anbi2d 464 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁)))
1711, 16mpbid 147 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁))
186notbid 667 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ ¬ (𝑀 = 0 ∧ -𝑁 = 0)))
19 simpl 109 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
20 znegcl 9273 . . . . . . . . . 10 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2120adantl 277 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -𝑁 ∈ ℤ)
22 dvdslegcd 11948 . . . . . . . . . 10 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ -𝑁 = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁)))
2322ex 115 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ -𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2413, 19, 21, 23syl3anc 1238 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ -𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2518, 24sylbid 150 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2625com12 30 . . . . . 6 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2717, 26mpdi 43 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁)))
2827impcom 125 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))
29 gcddvds 11947 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁))
3020, 29sylan2 286 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁))
31 gcdcl 11950 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℕ0)
3231nn0zd 9362 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℤ)
3320, 32sylan2 286 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℤ)
34 dvdsnegb 11799 . . . . . . . . 9 (((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑁 ↔ (𝑀 gcd -𝑁) ∥ -𝑁))
3533, 34sylancom 420 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑁 ↔ (𝑀 gcd -𝑁) ∥ -𝑁))
3635anbi2d 464 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) ↔ ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁)))
3730, 36mpbird 167 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁))
38 simpr 110 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
39 dvdslegcd 11948 . . . . . . . . 9 ((((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁)))
4039ex 115 . . . . . . . 8 (((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4133, 19, 38, 40syl3anc 1238 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4241com12 30 . . . . . 6 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4337, 42mpdi 43 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁)))
4443impcom 125 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))
4513zred 9364 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℝ)
4633zred 9364 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℝ)
4745, 46letri3d 8063 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = (𝑀 gcd -𝑁) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁) ∧ (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4847adantr 276 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) = (𝑀 gcd -𝑁) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁) ∧ (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4928, 44, 48mpbir2and 944 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
50 gcdmndc 11928 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
51 exmiddc 836 . . . 4 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
5250, 51syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
5310, 49, 52mpjaodan 798 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
5453eqcomd 2183 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4000  (class class class)co 5869  0cc0 7802  cle 7983  -cneg 8119  cz 9242  cdvds 11778   gcd cgcd 11926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927
This theorem is referenced by:  neggcd  11967  gcdabs  11972
  Copyright terms: Public domain W3C validator