ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdneg GIF version

Theorem gcdneg 12469
Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcdneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))

Proof of Theorem gcdneg
StepHypRef Expression
1 oveq12 5983 . . . . 5 ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd 𝑁) = (0 gcd 0))
21adantl 277 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (0 gcd 0))
3 zcn 9419 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
43negeq0d 8417 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 = 0 ↔ -𝑁 = 0))
54anbi2d 464 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑀 = 0 ∧ -𝑁 = 0)))
65adantl 277 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ↔ (𝑀 = 0 ∧ -𝑁 = 0)))
7 oveq12 5983 . . . . . 6 ((𝑀 = 0 ∧ -𝑁 = 0) → (𝑀 gcd -𝑁) = (0 gcd 0))
86, 7biimtrdi 163 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) → (𝑀 gcd -𝑁) = (0 gcd 0)))
98imp 124 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd -𝑁) = (0 gcd 0))
102, 9eqtr4d 2245 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
11 gcddvds 12450 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
12 gcdcl 12453 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
1312nn0zd 9535 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℤ)
14 dvdsnegb 12285 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ -𝑁))
1513, 14sylancom 420 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ -𝑁))
1615anbi2d 464 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁) ↔ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁)))
1711, 16mpbid 147 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁))
186notbid 671 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ ¬ (𝑀 = 0 ∧ -𝑁 = 0)))
19 simpl 109 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
20 znegcl 9445 . . . . . . . . . 10 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2120adantl 277 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -𝑁 ∈ ℤ)
22 dvdslegcd 12451 . . . . . . . . . 10 ((((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ -𝑁 = 0)) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁)))
2322ex 115 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ -𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2413, 19, 21, 23syl3anc 1252 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ -𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2518, 24sylbid 150 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2625com12 30 . . . . . 6 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ -𝑁) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))))
2717, 26mpdi 43 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁)))
2827impcom 125 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁))
29 gcddvds 12450 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁))
3020, 29sylan2 286 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁))
31 gcdcl 12453 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℕ0)
3231nn0zd 9535 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℤ)
3320, 32sylan2 286 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℤ)
34 dvdsnegb 12285 . . . . . . . . 9 (((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑁 ↔ (𝑀 gcd -𝑁) ∥ -𝑁))
3533, 34sylancom 420 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑁 ↔ (𝑀 gcd -𝑁) ∥ -𝑁))
3635anbi2d 464 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) ↔ ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ -𝑁)))
3730, 36mpbird 167 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁))
38 simpr 110 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
39 dvdslegcd 12451 . . . . . . . . 9 ((((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁)))
4039ex 115 . . . . . . . 8 (((𝑀 gcd -𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4133, 19, 38, 40syl3anc 1252 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4241com12 30 . . . . . 6 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 gcd -𝑁) ∥ 𝑀 ∧ (𝑀 gcd -𝑁) ∥ 𝑁) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4337, 42mpdi 43 . . . . 5 (¬ (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁)))
4443impcom 125 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))
4513zred 9537 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℝ)
4633zred 9537 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) ∈ ℝ)
4745, 46letri3d 8230 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = (𝑀 gcd -𝑁) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁) ∧ (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4847adantr 276 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑀 gcd 𝑁) = (𝑀 gcd -𝑁) ↔ ((𝑀 gcd 𝑁) ≤ (𝑀 gcd -𝑁) ∧ (𝑀 gcd -𝑁) ≤ (𝑀 gcd 𝑁))))
4928, 44, 48mpbir2and 949 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
50 gcdmndc 12442 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
51 exmiddc 840 . . . 4 (DECID (𝑀 = 0 ∧ 𝑁 = 0) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
5250, 51syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∧ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∧ 𝑁 = 0)))
5310, 49, 52mpjaodan 802 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd -𝑁))
5453eqcomd 2215 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838  w3a 983   = wceq 1375  wcel 2180   class class class wbr 4062  (class class class)co 5974  0cc0 7967  cle 8150  -cneg 8286  cz 9414  cdvds 12264   gcd cgcd 12440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-dvds 12265  df-gcd 12441
This theorem is referenced by:  neggcd  12470  gcdabs  12475
  Copyright terms: Public domain W3C validator