ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumprval GIF version

Theorem gsumprval 13281
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsumprval.b 𝐵 = (Base‘𝐺)
gsumprval.p + = (+g𝐺)
gsumprval.g (𝜑𝐺𝑉)
gsumprval.m (𝜑𝑀 ∈ ℤ)
gsumprval.n (𝜑𝑁 = (𝑀 + 1))
gsumprval.f (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
Assertion
Ref Expression
gsumprval (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))

Proof of Theorem gsumprval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumprval.b . . 3 𝐵 = (Base‘𝐺)
2 gsumprval.p . . 3 + = (+g𝐺)
3 gsumprval.g . . 3 (𝜑𝐺𝑉)
4 gsumprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
54uzidd 9676 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
6 peano2uz 9717 . . . 4 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
75, 6syl 14 . . 3 (𝜑 → (𝑀 + 1) ∈ (ℤ𝑀))
8 gsumprval.f . . . 4 (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
9 fzpr 10212 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
104, 9syl 14 . . . . . 6 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
11 gsumprval.n . . . . . . . 8 (𝜑𝑁 = (𝑀 + 1))
1211eqcomd 2212 . . . . . . 7 (𝜑 → (𝑀 + 1) = 𝑁)
1312preq2d 3719 . . . . . 6 (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁})
1410, 13eqtrd 2239 . . . . 5 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁})
1514feq2d 5420 . . . 4 (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵𝐹:{𝑀, 𝑁}⟶𝐵))
168, 15mpbird 167 . . 3 (𝜑𝐹:(𝑀...(𝑀 + 1))⟶𝐵)
171, 2, 3, 7, 16gsumval2 13279 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1)))
184peano2zd 9511 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
1911, 18eqeltrd 2283 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
20 prexg 4260 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ∈ V)
214, 19, 20syl2anc 411 . . . . . 6 (𝜑 → {𝑀, 𝑁} ∈ V)
228, 21fexd 5824 . . . . 5 (𝜑𝐹 ∈ V)
23 vex 2776 . . . . 5 𝑥 ∈ V
24 fvexg 5605 . . . . 5 ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹𝑥) ∈ V)
2522, 23, 24sylancl 413 . . . 4 (𝜑 → (𝐹𝑥) ∈ V)
2625adantr 276 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
27 plusgslid 12994 . . . . . . . 8 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2827slotex 12909 . . . . . . 7 (𝐺𝑉 → (+g𝐺) ∈ V)
293, 28syl 14 . . . . . 6 (𝜑 → (+g𝐺) ∈ V)
302, 29eqeltrid 2293 . . . . 5 (𝜑+ ∈ V)
31 vex 2776 . . . . . 6 𝑦 ∈ V
3231a1i 9 . . . . 5 (𝜑𝑦 ∈ V)
33 ovexg 5988 . . . . 5 ((𝑥 ∈ V ∧ + ∈ V ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V)
3423, 30, 32, 33mp3an2i 1355 . . . 4 (𝜑 → (𝑥 + 𝑦) ∈ V)
3534adantr 276 . . 3 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
365, 26, 35seq3p1 10623 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
374, 26, 35seq3-1 10620 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
3812fveq2d 5590 . . 3 (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹𝑁))
3937, 38oveq12d 5972 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹𝑀) + (𝐹𝑁)))
4017, 36, 393eqtrd 2243 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  {cpr 3636  wf 5273  cfv 5277  (class class class)co 5954  1c1 7939   + caddc 7941  cz 9385  cuz 9661  ...cfz 10143  seqcseq 10605  Basecbs 12882  +gcplusg 12959   Σg cgsu 13139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-1o 6512  df-er 6630  df-en 6838  df-fin 6840  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-2 9108  df-n0 9309  df-z 9386  df-uz 9662  df-fz 10144  df-seqfrec 10606  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-0g 13140  df-igsum 13141
This theorem is referenced by:  gsumpr12val  13282
  Copyright terms: Public domain W3C validator