| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumprval | GIF version | ||
| Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| gsumprval.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumprval.p | ⊢ + = (+g‘𝐺) |
| gsumprval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| gsumprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumprval.n | ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) |
| gsumprval.f | ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) |
| Ref | Expression |
|---|---|
| gsumprval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumprval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumprval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | gsumprval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 4 | gsumprval.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | 4 | uzidd 9725 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 6 | peano2uz 9766 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
| 8 | gsumprval.f | . . . 4 ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) | |
| 9 | fzpr 10261 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | |
| 10 | 4, 9 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) |
| 11 | gsumprval.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) | |
| 12 | 11 | eqcomd 2235 | . . . . . . 7 ⊢ (𝜑 → (𝑀 + 1) = 𝑁) |
| 13 | 12 | preq2d 3750 | . . . . . 6 ⊢ (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁}) |
| 14 | 10, 13 | eqtrd 2262 | . . . . 5 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁}) |
| 15 | 14 | feq2d 5457 | . . . 4 ⊢ (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵 ↔ 𝐹:{𝑀, 𝑁}⟶𝐵)) |
| 16 | 8, 15 | mpbird 167 | . . 3 ⊢ (𝜑 → 𝐹:(𝑀...(𝑀 + 1))⟶𝐵) |
| 17 | 1, 2, 3, 7, 16 | gsumval2 13416 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1))) |
| 18 | 4 | peano2zd 9560 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 19 | 11, 18 | eqeltrd 2306 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | prexg 4294 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ∈ V) | |
| 21 | 4, 19, 20 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → {𝑀, 𝑁} ∈ V) |
| 22 | 8, 21 | fexd 5862 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 23 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 24 | fvexg 5642 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹‘𝑥) ∈ V) | |
| 25 | 22, 23, 24 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑥) ∈ V) |
| 26 | 25 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
| 27 | plusgslid 13131 | . . . . . . . 8 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 28 | 27 | slotex 13045 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
| 29 | 3, 28 | syl 14 | . . . . . 6 ⊢ (𝜑 → (+g‘𝐺) ∈ V) |
| 30 | 2, 29 | eqeltrid 2316 | . . . . 5 ⊢ (𝜑 → + ∈ V) |
| 31 | vex 2802 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 32 | 31 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ V) |
| 33 | ovexg 6028 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ + ∈ V ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V) | |
| 34 | 23, 30, 32, 33 | mp3an2i 1376 | . . . 4 ⊢ (𝜑 → (𝑥 + 𝑦) ∈ V) |
| 35 | 34 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V) |
| 36 | 5, 26, 35 | seq3p1 10674 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1)))) |
| 37 | 4, 26, 35 | seq3-1 10671 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 38 | 12 | fveq2d 5627 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹‘𝑁)) |
| 39 | 37, 38 | oveq12d 6012 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
| 40 | 17, 36, 39 | 3eqtrd 2266 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {cpr 3667 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 1c1 7988 + caddc 7990 ℤcz 9434 ℤ≥cuz 9710 ...cfz 10192 seqcseq 10656 Basecbs 13018 +gcplusg 13096 Σg cgsu 13276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-er 6670 df-en 6878 df-fin 6880 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-seqfrec 10657 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-igsum 13278 |
| This theorem is referenced by: gsumpr12val 13419 |
| Copyright terms: Public domain | W3C validator |