ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumprval GIF version

Theorem gsumprval 13101
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsumprval.b 𝐵 = (Base‘𝐺)
gsumprval.p + = (+g𝐺)
gsumprval.g (𝜑𝐺𝑉)
gsumprval.m (𝜑𝑀 ∈ ℤ)
gsumprval.n (𝜑𝑁 = (𝑀 + 1))
gsumprval.f (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
Assertion
Ref Expression
gsumprval (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))

Proof of Theorem gsumprval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumprval.b . . 3 𝐵 = (Base‘𝐺)
2 gsumprval.p . . 3 + = (+g𝐺)
3 gsumprval.g . . 3 (𝜑𝐺𝑉)
4 gsumprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
54uzidd 9633 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
6 peano2uz 9674 . . . 4 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
75, 6syl 14 . . 3 (𝜑 → (𝑀 + 1) ∈ (ℤ𝑀))
8 gsumprval.f . . . 4 (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
9 fzpr 10169 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
104, 9syl 14 . . . . . 6 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
11 gsumprval.n . . . . . . . 8 (𝜑𝑁 = (𝑀 + 1))
1211eqcomd 2202 . . . . . . 7 (𝜑 → (𝑀 + 1) = 𝑁)
1312preq2d 3707 . . . . . 6 (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁})
1410, 13eqtrd 2229 . . . . 5 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁})
1514feq2d 5398 . . . 4 (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵𝐹:{𝑀, 𝑁}⟶𝐵))
168, 15mpbird 167 . . 3 (𝜑𝐹:(𝑀...(𝑀 + 1))⟶𝐵)
171, 2, 3, 7, 16gsumval2 13099 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1)))
184peano2zd 9468 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
1911, 18eqeltrd 2273 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
20 prexg 4245 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ∈ V)
214, 19, 20syl2anc 411 . . . . . 6 (𝜑 → {𝑀, 𝑁} ∈ V)
228, 21fexd 5795 . . . . 5 (𝜑𝐹 ∈ V)
23 vex 2766 . . . . 5 𝑥 ∈ V
24 fvexg 5580 . . . . 5 ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹𝑥) ∈ V)
2522, 23, 24sylancl 413 . . . 4 (𝜑 → (𝐹𝑥) ∈ V)
2625adantr 276 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ V)
27 plusgslid 12815 . . . . . . . 8 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2827slotex 12730 . . . . . . 7 (𝐺𝑉 → (+g𝐺) ∈ V)
293, 28syl 14 . . . . . 6 (𝜑 → (+g𝐺) ∈ V)
302, 29eqeltrid 2283 . . . . 5 (𝜑+ ∈ V)
31 vex 2766 . . . . . 6 𝑦 ∈ V
3231a1i 9 . . . . 5 (𝜑𝑦 ∈ V)
33 ovexg 5959 . . . . 5 ((𝑥 ∈ V ∧ + ∈ V ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V)
3423, 30, 32, 33mp3an2i 1353 . . . 4 (𝜑 → (𝑥 + 𝑦) ∈ V)
3534adantr 276 . . 3 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V)
365, 26, 35seq3p1 10574 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
374, 26, 35seq3-1 10571 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
3812fveq2d 5565 . . 3 (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹𝑁))
3937, 38oveq12d 5943 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹𝑀) + (𝐹𝑁)))
4017, 36, 393eqtrd 2233 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  {cpr 3624  wf 5255  cfv 5259  (class class class)co 5925  1c1 7897   + caddc 7899  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556  Basecbs 12703  +gcplusg 12780   Σg cgsu 12959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-igsum 12961
This theorem is referenced by:  gsumpr12val  13102
  Copyright terms: Public domain W3C validator