| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumprval | GIF version | ||
| Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| gsumprval.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumprval.p | ⊢ + = (+g‘𝐺) |
| gsumprval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| gsumprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumprval.n | ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) |
| gsumprval.f | ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) |
| Ref | Expression |
|---|---|
| gsumprval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumprval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumprval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | gsumprval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 4 | gsumprval.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | 4 | uzidd 9616 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 6 | peano2uz 9657 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
| 8 | gsumprval.f | . . . 4 ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) | |
| 9 | fzpr 10152 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | |
| 10 | 4, 9 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) |
| 11 | gsumprval.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) | |
| 12 | 11 | eqcomd 2202 | . . . . . . 7 ⊢ (𝜑 → (𝑀 + 1) = 𝑁) |
| 13 | 12 | preq2d 3706 | . . . . . 6 ⊢ (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁}) |
| 14 | 10, 13 | eqtrd 2229 | . . . . 5 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁}) |
| 15 | 14 | feq2d 5395 | . . . 4 ⊢ (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵 ↔ 𝐹:{𝑀, 𝑁}⟶𝐵)) |
| 16 | 8, 15 | mpbird 167 | . . 3 ⊢ (𝜑 → 𝐹:(𝑀...(𝑀 + 1))⟶𝐵) |
| 17 | 1, 2, 3, 7, 16 | gsumval2 13040 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1))) |
| 18 | 4 | peano2zd 9451 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 19 | 11, 18 | eqeltrd 2273 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | prexg 4244 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ∈ V) | |
| 21 | 4, 19, 20 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → {𝑀, 𝑁} ∈ V) |
| 22 | 8, 21 | fexd 5792 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 23 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 24 | fvexg 5577 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹‘𝑥) ∈ V) | |
| 25 | 22, 23, 24 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑥) ∈ V) |
| 26 | 25 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
| 27 | plusgslid 12790 | . . . . . . . 8 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 28 | 27 | slotex 12705 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
| 29 | 3, 28 | syl 14 | . . . . . 6 ⊢ (𝜑 → (+g‘𝐺) ∈ V) |
| 30 | 2, 29 | eqeltrid 2283 | . . . . 5 ⊢ (𝜑 → + ∈ V) |
| 31 | vex 2766 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 32 | 31 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ V) |
| 33 | ovexg 5956 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ + ∈ V ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V) | |
| 34 | 23, 30, 32, 33 | mp3an2i 1353 | . . . 4 ⊢ (𝜑 → (𝑥 + 𝑦) ∈ V) |
| 35 | 34 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V) |
| 36 | 5, 26, 35 | seq3p1 10557 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1)))) |
| 37 | 4, 26, 35 | seq3-1 10554 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 38 | 12 | fveq2d 5562 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹‘𝑁)) |
| 39 | 37, 38 | oveq12d 5940 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
| 40 | 17, 36, 39 | 3eqtrd 2233 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {cpr 3623 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 1c1 7880 + caddc 7882 ℤcz 9326 ℤ≥cuz 9601 ...cfz 10083 seqcseq 10539 Basecbs 12678 +gcplusg 12755 Σg cgsu 12928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-en 6800 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-igsum 12930 |
| This theorem is referenced by: gsumpr12val 13043 |
| Copyright terms: Public domain | W3C validator |