![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gsumprval | GIF version |
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.) |
Ref | Expression |
---|---|
gsumprval.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumprval.p | ⊢ + = (+g‘𝐺) |
gsumprval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsumprval.n | ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) |
gsumprval.f | ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) |
Ref | Expression |
---|---|
gsumprval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumprval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumprval.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | gsumprval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
4 | gsumprval.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | 4 | uzidd 9607 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
6 | peano2uz 9648 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
8 | gsumprval.f | . . . 4 ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) | |
9 | fzpr 10143 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | |
10 | 4, 9 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) |
11 | gsumprval.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) | |
12 | 11 | eqcomd 2199 | . . . . . . 7 ⊢ (𝜑 → (𝑀 + 1) = 𝑁) |
13 | 12 | preq2d 3702 | . . . . . 6 ⊢ (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁}) |
14 | 10, 13 | eqtrd 2226 | . . . . 5 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁}) |
15 | 14 | feq2d 5391 | . . . 4 ⊢ (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵 ↔ 𝐹:{𝑀, 𝑁}⟶𝐵)) |
16 | 8, 15 | mpbird 167 | . . 3 ⊢ (𝜑 → 𝐹:(𝑀...(𝑀 + 1))⟶𝐵) |
17 | 1, 2, 3, 7, 16 | gsumval2 12980 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1))) |
18 | 4 | peano2zd 9442 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
19 | 11, 18 | eqeltrd 2270 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | prexg 4240 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ∈ V) | |
21 | 4, 19, 20 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → {𝑀, 𝑁} ∈ V) |
22 | 8, 21 | fexd 5788 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
23 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
24 | fvexg 5573 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹‘𝑥) ∈ V) | |
25 | 22, 23, 24 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑥) ∈ V) |
26 | 25 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
27 | plusgslid 12730 | . . . . . . . 8 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
28 | 27 | slotex 12645 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
29 | 3, 28 | syl 14 | . . . . . 6 ⊢ (𝜑 → (+g‘𝐺) ∈ V) |
30 | 2, 29 | eqeltrid 2280 | . . . . 5 ⊢ (𝜑 → + ∈ V) |
31 | vex 2763 | . . . . . 6 ⊢ 𝑦 ∈ V | |
32 | 31 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ V) |
33 | ovexg 5952 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ + ∈ V ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V) | |
34 | 23, 30, 32, 33 | mp3an2i 1353 | . . . 4 ⊢ (𝜑 → (𝑥 + 𝑦) ∈ V) |
35 | 34 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V) |
36 | 5, 26, 35 | seq3p1 10536 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1)))) |
37 | 4, 26, 35 | seq3-1 10533 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
38 | 12 | fveq2d 5558 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹‘𝑁)) |
39 | 37, 38 | oveq12d 5936 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
40 | 17, 36, 39 | 3eqtrd 2230 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 {cpr 3619 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 1c1 7873 + caddc 7875 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 seqcseq 10518 Basecbs 12618 +gcplusg 12695 Σg cgsu 12868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-1o 6469 df-er 6587 df-en 6795 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-seqfrec 10519 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-igsum 12870 |
This theorem is referenced by: gsumpr12val 12983 |
Copyright terms: Public domain | W3C validator |