| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumprval | GIF version | ||
| Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| gsumprval.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumprval.p | ⊢ + = (+g‘𝐺) |
| gsumprval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| gsumprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumprval.n | ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) |
| gsumprval.f | ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) |
| Ref | Expression |
|---|---|
| gsumprval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumprval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumprval.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | gsumprval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 4 | gsumprval.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | 4 | uzidd 9745 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 6 | peano2uz 9786 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
| 7 | 5, 6 | syl 14 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
| 8 | gsumprval.f | . . . 4 ⊢ (𝜑 → 𝐹:{𝑀, 𝑁}⟶𝐵) | |
| 9 | fzpr 10281 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) | |
| 10 | 4, 9 | syl 14 | . . . . . 6 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)}) |
| 11 | gsumprval.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 = (𝑀 + 1)) | |
| 12 | 11 | eqcomd 2235 | . . . . . . 7 ⊢ (𝜑 → (𝑀 + 1) = 𝑁) |
| 13 | 12 | preq2d 3750 | . . . . . 6 ⊢ (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁}) |
| 14 | 10, 13 | eqtrd 2262 | . . . . 5 ⊢ (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁}) |
| 15 | 14 | feq2d 5461 | . . . 4 ⊢ (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵 ↔ 𝐹:{𝑀, 𝑁}⟶𝐵)) |
| 16 | 8, 15 | mpbird 167 | . . 3 ⊢ (𝜑 → 𝐹:(𝑀...(𝑀 + 1))⟶𝐵) |
| 17 | 1, 2, 3, 7, 16 | gsumval2 13438 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1))) |
| 18 | 4 | peano2zd 9580 | . . . . . . . 8 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 19 | 11, 18 | eqeltrd 2306 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 20 | prexg 4295 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ∈ V) | |
| 21 | 4, 19, 20 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → {𝑀, 𝑁} ∈ V) |
| 22 | 8, 21 | fexd 5873 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ V) |
| 23 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 24 | fvexg 5648 | . . . . 5 ⊢ ((𝐹 ∈ V ∧ 𝑥 ∈ V) → (𝐹‘𝑥) ∈ V) | |
| 25 | 22, 23, 24 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑥) ∈ V) |
| 26 | 25 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ V) |
| 27 | plusgslid 13153 | . . . . . . . 8 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 28 | 27 | slotex 13067 | . . . . . . 7 ⊢ (𝐺 ∈ 𝑉 → (+g‘𝐺) ∈ V) |
| 29 | 3, 28 | syl 14 | . . . . . 6 ⊢ (𝜑 → (+g‘𝐺) ∈ V) |
| 30 | 2, 29 | eqeltrid 2316 | . . . . 5 ⊢ (𝜑 → + ∈ V) |
| 31 | vex 2802 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 32 | 31 | a1i 9 | . . . . 5 ⊢ (𝜑 → 𝑦 ∈ V) |
| 33 | ovexg 6041 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ + ∈ V ∧ 𝑦 ∈ V) → (𝑥 + 𝑦) ∈ V) | |
| 34 | 23, 30, 32, 33 | mp3an2i 1376 | . . . 4 ⊢ (𝜑 → (𝑥 + 𝑦) ∈ V) |
| 35 | 34 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 + 𝑦) ∈ V) |
| 36 | 5, 26, 35 | seq3p1 10695 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1)))) |
| 37 | 4, 26, 35 | seq3-1 10692 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 38 | 12 | fveq2d 5633 | . . 3 ⊢ (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹‘𝑁)) |
| 39 | 37, 38 | oveq12d 6025 | . 2 ⊢ (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
| 40 | 17, 36, 39 | 3eqtrd 2266 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘𝑀) + (𝐹‘𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {cpr 3667 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 1c1 8008 + caddc 8010 ℤcz 9454 ℤ≥cuz 9730 ...cfz 10212 seqcseq 10677 Basecbs 13040 +gcplusg 13118 Σg cgsu 13298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-en 6896 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-seqfrec 10678 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-igsum 13300 |
| This theorem is referenced by: gsumpr12val 13441 |
| Copyright terms: Public domain | W3C validator |