| Step | Hyp | Ref
| Expression |
| 1 | | rabeq 2765 |
. . . . . . . . 9
⊢ (𝑉 = 𝑃 → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) |
| 2 | 1 | mpteq2dv 4139 |
. . . . . . . 8
⊢ (𝑉 = 𝑃 → (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) |
| 3 | 2 | eqeq2d 2218 |
. . . . . . 7
⊢ (𝑉 = 𝑃 → (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ↔ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) |
| 4 | | xpeq1 4693 |
. . . . . . . . 9
⊢ (𝑉 = 𝑃 → (𝑉 × 𝐿) = (𝑃 × 𝐿)) |
| 5 | 4 | sseq2d 3224 |
. . . . . . . 8
⊢ (𝑉 = 𝑃 → (𝐼 ⊆ (𝑉 × 𝐿) ↔ 𝐼 ⊆ (𝑃 × 𝐿))) |
| 6 | 5 | 3anbi2d 1330 |
. . . . . . 7
⊢ (𝑉 = 𝑃 → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ↔ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿))) |
| 7 | 3, 6 | anbi12d 473 |
. . . . . 6
⊢ (𝑉 = 𝑃 → ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) ↔ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)))) |
| 8 | | simpl 109 |
. . . . . . . 8
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) |
| 9 | | dmeq 4883 |
. . . . . . . . 9
⊢ (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) → dom 𝐸 = dom (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) |
| 10 | | eqid 2206 |
. . . . . . . . . 10
⊢ (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) |
| 11 | | eqid 2206 |
. . . . . . . . . . 11
⊢ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} = {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} |
| 12 | | incistruhgr.v |
. . . . . . . . . . . 12
⊢ 𝑉 = (Vtx‘𝐺) |
| 13 | | simpl1 1003 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → 𝐺 ∈ 𝑊) |
| 14 | | vtxex 15661 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ 𝑊 → (Vtx‘𝐺) ∈ V) |
| 15 | 13, 14 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → (Vtx‘𝐺) ∈ V) |
| 16 | 12, 15 | eqeltrid 2293 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → 𝑉 ∈ V) |
| 17 | 11, 16 | rabexd 4193 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ V) |
| 18 | 10, 17 | dmmptd 5412 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → dom (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) = 𝐿) |
| 19 | 9, 18 | sylan9eq 2259 |
. . . . . . . 8
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → dom 𝐸 = 𝐿) |
| 20 | 8, 19 | jca 306 |
. . . . . . 7
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → (𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿)) |
| 21 | | simpr 110 |
. . . . . . 7
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) |
| 22 | | eleq2 2270 |
. . . . . . . . . . 11
⊢ (𝑠 = {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} → (𝑗 ∈ 𝑠 ↔ 𝑗 ∈ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) |
| 23 | 22 | exbidv 1849 |
. . . . . . . . . 10
⊢ (𝑠 = {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} → (∃𝑗 𝑗 ∈ 𝑠 ↔ ∃𝑗 𝑗 ∈ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) |
| 24 | | ssrab2 3279 |
. . . . . . . . . . 11
⊢ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉 |
| 25 | | elpwg 3625 |
. . . . . . . . . . . 12
⊢ ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ V → ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉)) |
| 26 | 17, 25 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ({𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ⊆ 𝑉)) |
| 27 | 24, 26 | mpbiri 168 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ 𝒫 𝑉) |
| 28 | | eleq2 2270 |
. . . . . . . . . . . . . 14
⊢ (ran
𝐼 = 𝐿 → (𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿)) |
| 29 | 28 | 3ad2ant3 1023 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 ↔ 𝑒 ∈ 𝐿)) |
| 30 | | ssrelrn 4874 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ⊆ (𝑉 × 𝐿) ∧ 𝑒 ∈ ran 𝐼) → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
| 31 | 30 | ex 115 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ⊆ (𝑉 × 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) |
| 32 | 31 | 3ad2ant2 1022 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) |
| 33 | 29, 32 | sylbird 170 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ 𝐿 → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒)) |
| 34 | 33 | imp 124 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
| 35 | | rabn0m 3489 |
. . . . . . . . . . 11
⊢
(∃𝑗 𝑗 ∈ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ↔ ∃𝑣 ∈ 𝑉 𝑣𝐼𝑒) |
| 36 | 34, 35 | sylibr 134 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → ∃𝑗 𝑗 ∈ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) |
| 37 | 23, 27, 36 | elrabd 2932 |
. . . . . . . . 9
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒 ∈ 𝐿) → {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒} ∈ {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 38 | 37 | fmpttd 5742 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}):𝐿⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 39 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒})) |
| 40 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → dom 𝐸 = 𝐿) |
| 41 | 39, 40 | feq12d 5421 |
. . . . . . . 8
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → (𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}):𝐿⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 42 | 38, 41 | imbitrrid 156 |
. . . . . . 7
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 43 | 20, 21, 42 | sylc 62 |
. . . . . 6
⊢ ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑉 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 44 | 7, 43 | biimtrrdi 164 |
. . . . 5
⊢ (𝑉 = 𝑃 → ((𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}) ∧ (𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 45 | 44 | expdimp 259 |
. . . 4
⊢ ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 46 | 45 | impcom 125 |
. . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 47 | | incistruhgr.e |
. . . . . 6
⊢ 𝐸 = (iEdg‘𝐺) |
| 48 | 12, 47 | isuhgrm 15711 |
. . . . 5
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 49 | 48 | 3ad2ant1 1021 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 50 | 49 | adantr 276 |
. . 3
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗 ∈ 𝑠})) |
| 51 | 46, 50 | mpbird 167 |
. 2
⊢ (((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒}))) → 𝐺 ∈ UHGraph) |
| 52 | 51 | ex 115 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃 ∧ 𝐸 = (𝑒 ∈ 𝐿 ↦ {𝑣 ∈ 𝑃 ∣ 𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph)) |