ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  incistruhgr GIF version

Theorem incistruhgr 15855
Description: An incidence structure 𝑃, 𝐿, 𝐼 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.)
Hypotheses
Ref Expression
incistruhgr.v 𝑉 = (Vtx‘𝐺)
incistruhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
incistruhgr ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐼,𝑣   𝑒,𝐿,𝑣   𝑃,𝑒,𝑣   𝑒,𝑉,𝑣   𝑒,𝑊
Allowed substitution hints:   𝐸(𝑣)   𝐺(𝑣)   𝑊(𝑣)

Proof of Theorem incistruhgr
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2771 . . . . . . . . 9 (𝑉 = 𝑃 → {𝑣𝑉𝑣𝐼𝑒} = {𝑣𝑃𝑣𝐼𝑒})
21mpteq2dv 4154 . . . . . . . 8 (𝑉 = 𝑃 → (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))
32eqeq2d 2221 . . . . . . 7 (𝑉 = 𝑃 → (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ↔ 𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})))
4 xpeq1 4710 . . . . . . . . 9 (𝑉 = 𝑃 → (𝑉 × 𝐿) = (𝑃 × 𝐿))
54sseq2d 3234 . . . . . . . 8 (𝑉 = 𝑃 → (𝐼 ⊆ (𝑉 × 𝐿) ↔ 𝐼 ⊆ (𝑃 × 𝐿)))
653anbi2d 1332 . . . . . . 7 (𝑉 = 𝑃 → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ↔ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)))
73, 6anbi12d 473 . . . . . 6 (𝑉 = 𝑃 → ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) ↔ (𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿))))
8 simpl 109 . . . . . . . 8 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
9 dmeq 4900 . . . . . . . . 9 (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) → dom 𝐸 = dom (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
10 eqid 2209 . . . . . . . . . 10 (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒})
11 eqid 2209 . . . . . . . . . . 11 {𝑣𝑉𝑣𝐼𝑒} = {𝑣𝑉𝑣𝐼𝑒}
12 incistruhgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
13 simpl1 1005 . . . . . . . . . . . . 13 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → 𝐺𝑊)
14 vtxex 15784 . . . . . . . . . . . . 13 (𝐺𝑊 → (Vtx‘𝐺) ∈ V)
1513, 14syl 14 . . . . . . . . . . . 12 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → (Vtx‘𝐺) ∈ V)
1612, 15eqeltrid 2296 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → 𝑉 ∈ V)
1711, 16rabexd 4208 . . . . . . . . . 10 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ V)
1810, 17dmmptd 5430 . . . . . . . . 9 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → dom (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = 𝐿)
199, 18sylan9eq 2262 . . . . . . . 8 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → dom 𝐸 = 𝐿)
208, 19jca 306 . . . . . . 7 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿))
21 simpr 110 . . . . . . 7 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿))
22 eleq2 2273 . . . . . . . . . . 11 (𝑠 = {𝑣𝑉𝑣𝐼𝑒} → (𝑗𝑠𝑗 ∈ {𝑣𝑉𝑣𝐼𝑒}))
2322exbidv 1851 . . . . . . . . . 10 (𝑠 = {𝑣𝑉𝑣𝐼𝑒} → (∃𝑗 𝑗𝑠 ↔ ∃𝑗 𝑗 ∈ {𝑣𝑉𝑣𝐼𝑒}))
24 ssrab2 3289 . . . . . . . . . . 11 {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉
25 elpwg 3637 . . . . . . . . . . . 12 ({𝑣𝑉𝑣𝐼𝑒} ∈ V → ({𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉))
2617, 25syl 14 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ({𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉))
2724, 26mpbiri 168 . . . . . . . . . 10 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉)
28 eleq2 2273 . . . . . . . . . . . . . 14 (ran 𝐼 = 𝐿 → (𝑒 ∈ ran 𝐼𝑒𝐿))
29283ad2ant3 1025 . . . . . . . . . . . . 13 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼𝑒𝐿))
30 ssrelrn 4891 . . . . . . . . . . . . . . 15 ((𝐼 ⊆ (𝑉 × 𝐿) ∧ 𝑒 ∈ ran 𝐼) → ∃𝑣𝑉 𝑣𝐼𝑒)
3130ex 115 . . . . . . . . . . . . . 14 (𝐼 ⊆ (𝑉 × 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣𝑉 𝑣𝐼𝑒))
32313ad2ant2 1024 . . . . . . . . . . . . 13 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣𝑉 𝑣𝐼𝑒))
3329, 32sylbird 170 . . . . . . . . . . . 12 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒𝐿 → ∃𝑣𝑉 𝑣𝐼𝑒))
3433imp 124 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ∃𝑣𝑉 𝑣𝐼𝑒)
35 rabn0m 3499 . . . . . . . . . . 11 (∃𝑗 𝑗 ∈ {𝑣𝑉𝑣𝐼𝑒} ↔ ∃𝑣𝑉 𝑣𝐼𝑒)
3634, 35sylibr 134 . . . . . . . . . 10 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ∃𝑗 𝑗 ∈ {𝑣𝑉𝑣𝐼𝑒})
3723, 27, 36elrabd 2941 . . . . . . . . 9 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
3837fmpttd 5763 . . . . . . . 8 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}):𝐿⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
39 simpl 109 . . . . . . . . 9 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → 𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
40 simpr 110 . . . . . . . . 9 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → dom 𝐸 = 𝐿)
4139, 40feq12d 5439 . . . . . . . 8 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → (𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠} ↔ (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}):𝐿⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
4238, 41imbitrrid 156 . . . . . . 7 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
4320, 21, 42sylc 62 . . . . . 6 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
447, 43biimtrrdi 164 . . . . 5 (𝑉 = 𝑃 → ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
4544expdimp 259 . . . 4 ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
4645impcom 125 . . 3 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
47 incistruhgr.e . . . . . 6 𝐸 = (iEdg‘𝐺)
4812, 47isuhgrm 15836 . . . . 5 (𝐺𝑊 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
49483ad2ant1 1023 . . . 4 ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
5049adantr 276 . . 3 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
5146, 50mpbird 167 . 2 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → 𝐺 ∈ UHGraph)
5251ex 115 1 ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wex 1518  wcel 2180  wrex 2489  {crab 2492  Vcvv 2779  wss 3177  𝒫 cpw 3629   class class class wbr 4062  cmpt 4124   × cxp 4694  dom cdm 4696  ran crn 4697  wf 5290  cfv 5294  Vtxcvtx 15778  iEdgciedg 15779  UHGraphcuhgr 15832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-base 13004  df-edgf 15771  df-vtx 15780  df-iedg 15781  df-uhgrm 15834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator