ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  incistruhgr GIF version

Theorem incistruhgr 15730
Description: An incidence structure 𝑃, 𝐿, 𝐼 "where 𝑃 is a set whose elements are called points, 𝐿 is a distinct set whose elements are called lines and 𝐼 ⊆ (𝑃 × 𝐿) is the incidence relation" (see Wikipedia "Incidence structure" (24-Oct-2020), https://en.wikipedia.org/wiki/Incidence_structure) implies an undirected hypergraph, if the incidence relation is right-total (to exclude empty edges). The points become the vertices, and the edge function is derived from the incidence relation by mapping each line ("edge") to the set of vertices incident to the line/edge. With 𝑃 = (Base‘𝑆) and by defining two new slots for lines and incidence relations and enhancing the definition of iEdg accordingly, it would even be possible to express that a corresponding incidence structure is an undirected hypergraph. By choosing the incident relation appropriately, other kinds of undirected graphs (pseudographs, multigraphs, simple graphs, etc.) could be defined. (Contributed by AV, 24-Oct-2020.)
Hypotheses
Ref Expression
incistruhgr.v 𝑉 = (Vtx‘𝐺)
incistruhgr.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
incistruhgr ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝐼,𝑣   𝑒,𝐿,𝑣   𝑃,𝑒,𝑣   𝑒,𝑉,𝑣   𝑒,𝑊
Allowed substitution hints:   𝐸(𝑣)   𝐺(𝑣)   𝑊(𝑣)

Proof of Theorem incistruhgr
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2765 . . . . . . . . 9 (𝑉 = 𝑃 → {𝑣𝑉𝑣𝐼𝑒} = {𝑣𝑃𝑣𝐼𝑒})
21mpteq2dv 4139 . . . . . . . 8 (𝑉 = 𝑃 → (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))
32eqeq2d 2218 . . . . . . 7 (𝑉 = 𝑃 → (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ↔ 𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})))
4 xpeq1 4693 . . . . . . . . 9 (𝑉 = 𝑃 → (𝑉 × 𝐿) = (𝑃 × 𝐿))
54sseq2d 3224 . . . . . . . 8 (𝑉 = 𝑃 → (𝐼 ⊆ (𝑉 × 𝐿) ↔ 𝐼 ⊆ (𝑃 × 𝐿)))
653anbi2d 1330 . . . . . . 7 (𝑉 = 𝑃 → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ↔ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)))
73, 6anbi12d 473 . . . . . 6 (𝑉 = 𝑃 → ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) ↔ (𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿))))
8 simpl 109 . . . . . . . 8 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
9 dmeq 4883 . . . . . . . . 9 (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) → dom 𝐸 = dom (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
10 eqid 2206 . . . . . . . . . 10 (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒})
11 eqid 2206 . . . . . . . . . . 11 {𝑣𝑉𝑣𝐼𝑒} = {𝑣𝑉𝑣𝐼𝑒}
12 incistruhgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
13 simpl1 1003 . . . . . . . . . . . . 13 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → 𝐺𝑊)
14 vtxex 15661 . . . . . . . . . . . . 13 (𝐺𝑊 → (Vtx‘𝐺) ∈ V)
1513, 14syl 14 . . . . . . . . . . . 12 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → (Vtx‘𝐺) ∈ V)
1612, 15eqeltrid 2293 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → 𝑉 ∈ V)
1711, 16rabexd 4193 . . . . . . . . . 10 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ V)
1810, 17dmmptd 5412 . . . . . . . . 9 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → dom (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) = 𝐿)
199, 18sylan9eq 2259 . . . . . . . 8 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → dom 𝐸 = 𝐿)
208, 19jca 306 . . . . . . 7 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → (𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿))
21 simpr 110 . . . . . . 7 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿))
22 eleq2 2270 . . . . . . . . . . 11 (𝑠 = {𝑣𝑉𝑣𝐼𝑒} → (𝑗𝑠𝑗 ∈ {𝑣𝑉𝑣𝐼𝑒}))
2322exbidv 1849 . . . . . . . . . 10 (𝑠 = {𝑣𝑉𝑣𝐼𝑒} → (∃𝑗 𝑗𝑠 ↔ ∃𝑗 𝑗 ∈ {𝑣𝑉𝑣𝐼𝑒}))
24 ssrab2 3279 . . . . . . . . . . 11 {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉
25 elpwg 3625 . . . . . . . . . . . 12 ({𝑣𝑉𝑣𝐼𝑒} ∈ V → ({𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉))
2617, 25syl 14 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ({𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉 ↔ {𝑣𝑉𝑣𝐼𝑒} ⊆ 𝑉))
2724, 26mpbiri 168 . . . . . . . . . 10 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ 𝒫 𝑉)
28 eleq2 2270 . . . . . . . . . . . . . 14 (ran 𝐼 = 𝐿 → (𝑒 ∈ ran 𝐼𝑒𝐿))
29283ad2ant3 1023 . . . . . . . . . . . . 13 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼𝑒𝐿))
30 ssrelrn 4874 . . . . . . . . . . . . . . 15 ((𝐼 ⊆ (𝑉 × 𝐿) ∧ 𝑒 ∈ ran 𝐼) → ∃𝑣𝑉 𝑣𝐼𝑒)
3130ex 115 . . . . . . . . . . . . . 14 (𝐼 ⊆ (𝑉 × 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣𝑉 𝑣𝐼𝑒))
32313ad2ant2 1022 . . . . . . . . . . . . 13 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒 ∈ ran 𝐼 → ∃𝑣𝑉 𝑣𝐼𝑒))
3329, 32sylbird 170 . . . . . . . . . . . 12 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒𝐿 → ∃𝑣𝑉 𝑣𝐼𝑒))
3433imp 124 . . . . . . . . . . 11 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ∃𝑣𝑉 𝑣𝐼𝑒)
35 rabn0m 3489 . . . . . . . . . . 11 (∃𝑗 𝑗 ∈ {𝑣𝑉𝑣𝐼𝑒} ↔ ∃𝑣𝑉 𝑣𝐼𝑒)
3634, 35sylibr 134 . . . . . . . . . 10 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → ∃𝑗 𝑗 ∈ {𝑣𝑉𝑣𝐼𝑒})
3723, 27, 36elrabd 2932 . . . . . . . . 9 (((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ 𝑒𝐿) → {𝑣𝑉𝑣𝐼𝑒} ∈ {𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
3837fmpttd 5742 . . . . . . . 8 ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}):𝐿⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
39 simpl 109 . . . . . . . . 9 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → 𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}))
40 simpr 110 . . . . . . . . 9 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → dom 𝐸 = 𝐿)
4139, 40feq12d 5421 . . . . . . . 8 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → (𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠} ↔ (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}):𝐿⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
4238, 41imbitrrid 156 . . . . . . 7 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ dom 𝐸 = 𝐿) → ((𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
4320, 21, 42sylc 62 . . . . . 6 ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑉𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑉 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
447, 43biimtrrdi 164 . . . . 5 (𝑉 = 𝑃 → ((𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}) ∧ (𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿)) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
4544expdimp 259 . . . 4 ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
4645impcom 125 . . 3 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠})
47 incistruhgr.e . . . . . 6 𝐸 = (iEdg‘𝐺)
4812, 47isuhgrm 15711 . . . . 5 (𝐺𝑊 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
49483ad2ant1 1021 . . . 4 ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
5049adantr 276 . . 3 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶{𝑠 ∈ 𝒫 𝑉 ∣ ∃𝑗 𝑗𝑠}))
5146, 50mpbird 167 . 2 (((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) ∧ (𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒}))) → 𝐺 ∈ UHGraph)
5251ex 115 1 ((𝐺𝑊𝐼 ⊆ (𝑃 × 𝐿) ∧ ran 𝐼 = 𝐿) → ((𝑉 = 𝑃𝐸 = (𝑒𝐿 ↦ {𝑣𝑃𝑣𝐼𝑒})) → 𝐺 ∈ UHGraph))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2177  wrex 2486  {crab 2489  Vcvv 2773  wss 3167  𝒫 cpw 3617   class class class wbr 4047  cmpt 4109   × cxp 4677  dom cdm 4679  ran crn 4680  wf 5272  cfv 5276  Vtxcvtx 15655  iEdgciedg 15656  UHGraphcuhgr 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fo 5282  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-sub 8252  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-dec 9512  df-ndx 12879  df-slot 12880  df-base 12882  df-edgf 15648  df-vtx 15657  df-iedg 15658  df-uhgrm 15709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator