Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mul01d | GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mul01d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mul01d | ⊢ (𝜑 → (𝐴 · 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul01d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mul01 8320 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 0) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 (class class class)co 5865 ℂcc 7784 0cc0 7786 · cmul 7791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 |
This theorem is referenced by: mulap0r 8546 diveqap0 8612 div0ap 8632 mulle0r 8874 un0mulcl 9183 modqid 10319 addmodlteq 10368 expmul 10535 bcval5 10711 fsummulc2 11424 geolim 11487 fprodeq0 11593 0dvds 11786 gcdaddm 11952 bezoutlema 11967 bezoutlemb 11968 lcmgcd 12045 mulgcddvds 12061 cncongr2 12071 prmdiv 12202 pcaddlem 12305 qexpz 12317 mulgnn0ass 12879 dvcnp2cntop 13734 sin0pilem1 13773 sin0pilem2 13774 sinmpi 13807 cosmpi 13808 sinppi 13809 cosppi 13810 lgsdilem 13999 lgsdir2 14005 lgsdirnn0 14019 lgsdinn0 14020 trilpolemclim 14345 trilpolemisumle 14347 trilpolemeq1 14349 nconstwlpolem0 14371 |
Copyright terms: Public domain | W3C validator |