Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mul01d | GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mul01d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mul01d | ⊢ (𝜑 → (𝐴 · 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul01d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mul01 8287 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 0) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 0cc0 7753 · cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 |
This theorem is referenced by: mulap0r 8513 diveqap0 8578 div0ap 8598 mulle0r 8839 un0mulcl 9148 modqid 10284 addmodlteq 10333 expmul 10500 bcval5 10676 fsummulc2 11389 geolim 11452 fprodeq0 11558 0dvds 11751 gcdaddm 11917 bezoutlema 11932 bezoutlemb 11933 lcmgcd 12010 mulgcddvds 12026 cncongr2 12036 prmdiv 12167 pcaddlem 12270 qexpz 12282 dvcnp2cntop 13303 sin0pilem1 13342 sin0pilem2 13343 sinmpi 13376 cosmpi 13377 sinppi 13378 cosppi 13379 lgsdilem 13568 lgsdir2 13574 lgsdirnn0 13588 lgsdinn0 13589 trilpolemclim 13915 trilpolemisumle 13917 trilpolemeq1 13919 nconstwlpolem0 13941 |
Copyright terms: Public domain | W3C validator |