![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul01d | GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mul01d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mul01d | ⊢ (𝜑 → (𝐴 · 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul01d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mul01 8070 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 0) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ∈ wcel 1463 (class class class)co 5728 ℂcc 7545 0cc0 7547 · cmul 7552 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-setind 4412 ax-resscn 7637 ax-1cn 7638 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-distr 7649 ax-i2m1 7650 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-sub 7858 |
This theorem is referenced by: mulap0r 8295 diveqap0 8355 div0ap 8375 mulle0r 8612 un0mulcl 8915 modqid 10015 addmodlteq 10064 expmul 10231 bcval5 10402 fsummulc2 11109 geolim 11172 0dvds 11361 gcdaddm 11520 bezoutlema 11533 bezoutlemb 11534 lcmgcd 11605 mulgcddvds 11621 cncongr2 11631 dvcnp2cntop 12618 trilpolemclim 12921 trilpolemisumle 12923 trilpolemeq1 12925 |
Copyright terms: Public domain | W3C validator |