ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul01d GIF version

Theorem mul01d 8074
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
mul01d.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
mul01d (𝜑 → (𝐴 · 0) = 0)

Proof of Theorem mul01d
StepHypRef Expression
1 mul01d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mul01 8070 . 2 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
31, 2syl 14 1 (𝜑 → (𝐴 · 0) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wcel 1463  (class class class)co 5728  cc 7545  0cc0 7547   · cmul 7552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-setind 4412  ax-resscn 7637  ax-1cn 7638  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-sub 7858
This theorem is referenced by:  mulap0r  8295  diveqap0  8355  div0ap  8375  mulle0r  8612  un0mulcl  8915  modqid  10015  addmodlteq  10064  expmul  10231  bcval5  10402  fsummulc2  11109  geolim  11172  0dvds  11361  gcdaddm  11520  bezoutlema  11533  bezoutlemb  11534  lcmgcd  11605  mulgcddvds  11621  cncongr2  11631  dvcnp2cntop  12618  trilpolemclim  12921  trilpolemisumle  12923  trilpolemeq1  12925
  Copyright terms: Public domain W3C validator