ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul01d GIF version

Theorem mul01d 8148
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
mul01d.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
mul01d (𝜑 → (𝐴 · 0) = 0)

Proof of Theorem mul01d
StepHypRef Expression
1 mul01d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 mul01 8144 . 2 (𝐴 ∈ ℂ → (𝐴 · 0) = 0)
31, 2syl 14 1 (𝜑 → (𝐴 · 0) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  (class class class)co 5767  cc 7611  0cc0 7613   · cmul 7618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447  ax-resscn 7705  ax-1cn 7706  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-sub 7928
This theorem is referenced by:  mulap0r  8370  diveqap0  8435  div0ap  8455  mulle0r  8695  un0mulcl  9004  modqid  10115  addmodlteq  10164  expmul  10331  bcval5  10502  fsummulc2  11210  geolim  11273  0dvds  11502  gcdaddm  11661  bezoutlema  11676  bezoutlemb  11677  lcmgcd  11748  mulgcddvds  11764  cncongr2  11774  dvcnp2cntop  12821  sin0pilem1  12851  sin0pilem2  12852  sinmpi  12885  cosmpi  12886  sinppi  12887  cosppi  12888  trilpolemclim  13218  trilpolemisumle  13220  trilpolemeq1  13222
  Copyright terms: Public domain W3C validator