| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul01d | GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mul01d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mul01d | ⊢ (𝜑 → (𝐴 · 0) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mul01 8434 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 0) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 0cc0 7898 · cmul 7903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8218 |
| This theorem is referenced by: mulap0r 8661 diveqap0 8728 div0ap 8748 mulle0r 8990 un0mulcl 9302 modqid 10460 addmodlteq 10509 expmul 10695 bcval5 10874 fsummulc2 11632 geolim 11695 fprodeq0 11801 0dvds 11995 gcdaddm 12178 bezoutlema 12193 bezoutlemb 12194 lcmgcd 12273 mulgcddvds 12289 cncongr2 12299 prmdiv 12430 pcaddlem 12535 qexpz 12548 mulgnn0ass 13366 dvcnp2cntop 15043 plymullem1 15092 dvply1 15109 sin0pilem1 15125 sin0pilem2 15126 sinmpi 15159 cosmpi 15160 sinppi 15161 cosppi 15162 lgsdilem 15376 lgsdir2 15382 lgsdirnn0 15396 lgsdinn0 15397 lgsquad3 15433 trilpolemclim 15793 trilpolemisumle 15795 trilpolemeq1 15797 nconstwlpolem0 15820 |
| Copyright terms: Public domain | W3C validator |