![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul01d | GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mul01d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
mul01d | ⊢ (𝜑 → (𝐴 · 0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul01d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | mul01 8410 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 · 0) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 0cc0 7874 · cmul 7879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 |
This theorem is referenced by: mulap0r 8636 diveqap0 8703 div0ap 8723 mulle0r 8965 un0mulcl 9277 modqid 10423 addmodlteq 10472 expmul 10658 bcval5 10837 fsummulc2 11594 geolim 11657 fprodeq0 11763 0dvds 11957 gcdaddm 12124 bezoutlema 12139 bezoutlemb 12140 lcmgcd 12219 mulgcddvds 12235 cncongr2 12245 prmdiv 12376 pcaddlem 12480 qexpz 12493 mulgnn0ass 13231 dvcnp2cntop 14878 plymullem1 14927 dvply1 14943 sin0pilem1 14957 sin0pilem2 14958 sinmpi 14991 cosmpi 14992 sinppi 14993 cosppi 14994 lgsdilem 15184 lgsdir2 15190 lgsdirnn0 15204 lgsdinn0 15205 lgsquad3 15241 trilpolemclim 15596 trilpolemisumle 15598 trilpolemeq1 15600 nconstwlpolem0 15623 |
Copyright terms: Public domain | W3C validator |