ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyconst Unicode version

Theorem plyconst 15007
Description: A constant function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyconst  |-  ( ( S  C_  CC  /\  A  e.  S )  ->  ( CC  X.  { A }
)  e.  (Poly `  S ) )

Proof of Theorem plyconst
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 exp0 10638 . . . . . . 7  |-  ( z  e.  CC  ->  (
z ^ 0 )  =  1 )
21adantl 277 . . . . . 6  |-  ( ( ( S  C_  CC  /\  A  e.  S )  /\  z  e.  CC )  ->  ( z ^
0 )  =  1 )
32oveq2d 5939 . . . . 5  |-  ( ( ( S  C_  CC  /\  A  e.  S )  /\  z  e.  CC )  ->  ( A  x.  ( z ^ 0 ) )  =  ( A  x.  1 ) )
4 ssel2 3179 . . . . . . 7  |-  ( ( S  C_  CC  /\  A  e.  S )  ->  A  e.  CC )
54adantr 276 . . . . . 6  |-  ( ( ( S  C_  CC  /\  A  e.  S )  /\  z  e.  CC )  ->  A  e.  CC )
65mulridd 8046 . . . . 5  |-  ( ( ( S  C_  CC  /\  A  e.  S )  /\  z  e.  CC )  ->  ( A  x.  1 )  =  A )
73, 6eqtrd 2229 . . . 4  |-  ( ( ( S  C_  CC  /\  A  e.  S )  /\  z  e.  CC )  ->  ( A  x.  ( z ^ 0 ) )  =  A )
87mpteq2dva 4124 . . 3  |-  ( ( S  C_  CC  /\  A  e.  S )  ->  (
z  e.  CC  |->  ( A  x.  ( z ^ 0 ) ) )  =  ( z  e.  CC  |->  A ) )
9 fconstmpt 4711 . . 3  |-  ( CC 
X.  { A }
)  =  ( z  e.  CC  |->  A )
108, 9eqtr4di 2247 . 2  |-  ( ( S  C_  CC  /\  A  e.  S )  ->  (
z  e.  CC  |->  ( A  x.  ( z ^ 0 ) ) )  =  ( CC 
X.  { A }
) )
11 0nn0 9267 . . 3  |-  0  e.  NN0
12 eqid 2196 . . . 4  |-  ( z  e.  CC  |->  ( A  x.  ( z ^
0 ) ) )  =  ( z  e.  CC  |->  ( A  x.  ( z ^ 0 ) ) )
1312ply1term 15005 . . 3  |-  ( ( S  C_  CC  /\  A  e.  S  /\  0  e.  NN0 )  ->  (
z  e.  CC  |->  ( A  x.  ( z ^ 0 ) ) )  e.  (Poly `  S ) )
1411, 13mp3an3 1337 . 2  |-  ( ( S  C_  CC  /\  A  e.  S )  ->  (
z  e.  CC  |->  ( A  x.  ( z ^ 0 ) ) )  e.  (Poly `  S ) )
1510, 14eqeltrrd 2274 1  |-  ( ( S  C_  CC  /\  A  e.  S )  ->  ( CC  X.  { A }
)  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   {csn 3623    |-> cmpt 4095    X. cxp 4662   ` cfv 5259  (class class class)co 5923   CCcc 7880   0cc0 7882   1c1 7883    x. cmul 7887   NN0cn0 9252   ^cexp 10633  Polycply 14990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-irdg 6430  df-frec 6451  df-1o 6476  df-oadd 6480  df-er 6594  df-map 6711  df-en 6802  df-dom 6803  df-fin 6804  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-fz 10087  df-fzo 10221  df-seqfrec 10543  df-exp 10634  df-ihash 10871  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-clim 11447  df-sumdc 11522  df-ply 14992
This theorem is referenced by:  plysub  15015  plycolemc  15020
  Copyright terms: Public domain W3C validator