ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyrecj Unicode version

Theorem plyrecj 15402
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
plyrecj  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  (
* `  ( F `  A ) )  =  ( F `  (
* `  A )
) )

Proof of Theorem plyrecj
Dummy variables  a  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  F  e.  (Poly `  RR )
)
2 elply 15373 . . . 4  |-  ( F  e.  (Poly `  RR ) 
<->  ( RR  C_  CC  /\ 
E. n  e.  NN0  E. a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) F  =  (
x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) ) )
31, 2sylib 122 . . 3  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  ( RR  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) ) )
43simprd 114 . 2  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  E. n  e.  NN0  E. a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) )
5 0zd 9426 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  0  e.  ZZ )
6 simprl 529 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  n  e.  NN0 )
76nn0zd 9535 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  n  e.  ZZ )
85, 7fzfigd 10620 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
0 ... n )  e. 
Fin )
9 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  a  e.  ( ( RR  u.  {
0 } )  ^m  NN0 ) )
10 0re 8114 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
11 snssi 3791 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  RR  ->  { 0 }  C_  RR )
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16  |-  { 0 }  C_  RR
13 ssequn2 3357 . . . . . . . . . . . . . . . 16  |-  ( { 0 }  C_  RR  <->  ( RR  u.  { 0 } )  =  RR )
1412, 13mpbi 145 . . . . . . . . . . . . . . 15  |-  ( RR  u.  { 0 } )  =  RR
15 reex 8101 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
1614, 15eqeltri 2282 . . . . . . . . . . . . . 14  |-  ( RR  u.  { 0 } )  e.  _V
17 nn0ex 9343 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
1816, 17elmap 6794 . . . . . . . . . . . . 13  |-  ( a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )  <->  a : NN0 --> ( RR  u.  { 0 } ) )
19 feq3 5434 . . . . . . . . . . . . . 14  |-  ( ( RR  u.  { 0 } )  =  RR 
->  ( a : NN0 --> ( RR  u.  { 0 } )  <->  a : NN0
--> RR ) )
2014, 19ax-mp 5 . . . . . . . . . . . . 13  |-  ( a : NN0 --> ( RR  u.  { 0 } )  <->  a : NN0 --> RR )
2118, 20bitri 184 . . . . . . . . . . . 12  |-  ( a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )  <->  a : NN0 --> RR )
229, 21sylib 122 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  a : NN0 --> RR )
23 elfznn0 10278 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
2423adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  k  e.  NN0 )
2522, 24ffvelcdmd 5744 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( a `  k )  e.  RR )
2625recnd 8143 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( a `  k )  e.  CC )
27 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  A  e.  CC )
2827, 24expcld 10862 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( A ^
k )  e.  CC )
2926, 28mulcld 8135 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( a `
 k )  x.  ( A ^ k
) )  e.  CC )
308, 29fsumcj 11951 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
* `  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) ) )  = 
sum_ k  e.  ( 0 ... n ) ( * `  (
( a `  k
)  x.  ( A ^ k ) ) ) )
3126, 28cjmuld 11443 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( ( a `  k )  x.  ( A ^ k ) ) )  =  ( ( * `  ( a `
 k ) )  x.  ( * `  ( A ^ k ) ) ) )
32 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) )
3332, 21sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  a : NN0 --> RR )
3433adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  a : NN0 --> RR )
3534, 24ffvelcdmd 5744 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( a `  k )  e.  RR )
3635cjred 11448 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( a `  k
) )  =  ( a `  k ) )
3727, 24cjexpd 11435 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( A ^ k ) )  =  ( ( * `  A ) ^ k ) )
3836, 37oveq12d 5992 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( * `
 ( a `  k ) )  x.  ( * `  ( A ^ k ) ) )  =  ( ( a `  k )  x.  ( ( * `
 A ) ^
k ) ) )
3931, 38eqtrd 2242 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( ( a `  k )  x.  ( A ^ k ) ) )  =  ( ( a `  k )  x.  ( ( * `
 A ) ^
k ) ) )
4039sumeq2dv 11845 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  sum_ k  e.  ( 0 ... n
) ( * `  ( ( a `  k )  x.  ( A ^ k ) ) )  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
4130, 40eqtrd 2242 . . . . . 6  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
* `  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) ) )  = 
sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
( * `  A
) ^ k ) ) )
4241adantr 276 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( * `  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( A ^ k ) ) )  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
43 simpr 110 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )
4443fveq1d 5605 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( F `  A
)  =  ( ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) `  A ) )
45 eqid 2209 . . . . . . . . 9  |-  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( x ^ k
) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) )
46 oveq1 5981 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x ^ k )  =  ( A ^
k ) )
4746oveq2d 5990 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( a `  k
)  x.  ( x ^ k ) )  =  ( ( a `
 k )  x.  ( A ^ k
) ) )
4847sumeq2sdv 11847 . . . . . . . . 9  |-  ( x  =  A  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( A ^ k ) ) )
49 simplr 528 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  A  e.  CC )
508, 29fsumcl 11877 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) )  e.  CC )
5145, 48, 49, 50fvmptd3 5701 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) `  A )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( A ^ k ) ) )
5251adantr 276 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) `  A
)  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) ) )
5344, 52eqtrd 2242 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( F `  A
)  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) ) )
5453fveq2d 5607 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( * `  ( F `  A )
)  =  ( * `
 sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( A ^ k ) ) ) )
5543fveq1d 5605 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( F `  (
* `  A )
)  =  ( ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) `  ( * `
 A ) ) )
56 oveq1 5981 . . . . . . . . . 10  |-  ( x  =  ( * `  A )  ->  (
x ^ k )  =  ( ( * `
 A ) ^
k ) )
5756oveq2d 5990 . . . . . . . . 9  |-  ( x  =  ( * `  A )  ->  (
( a `  k
)  x.  ( x ^ k ) )  =  ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
5857sumeq2sdv 11847 . . . . . . . 8  |-  ( x  =  ( * `  A )  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( ( * `  A ) ^ k ) ) )
5949cjcld 11417 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
* `  A )  e.  CC )
6059adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  A )  e.  CC )
6160, 24expcld 10862 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( * `
 A ) ^
k )  e.  CC )
6226, 61mulcld 8135 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) )  e.  CC )
638, 62fsumcl 11877 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) )  e.  CC )
6445, 58, 59, 63fvmptd3 5701 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) `  ( * `
 A ) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
( * `  A
) ^ k ) ) )
6564adantr 276 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) `  (
* `  A )
)  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
6655, 65eqtrd 2242 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( F `  (
* `  A )
)  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
6742, 54, 663eqtr4d 2252 . . . 4  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( * `  ( F `  A )
)  =  ( F `
 ( * `  A ) ) )
6867ex 115 . . 3  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  ( F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) )  ->  (
* `  ( F `  A ) )  =  ( F `  (
* `  A )
) ) )
6968rexlimdvva 2636 . 2  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  ( E. n  e.  NN0  E. a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) F  =  (
x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) )  ->  ( * `  ( F `  A
) )  =  ( F `  ( * `
 A ) ) ) )
704, 69mpd 13 1  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  (
* `  ( F `  A ) )  =  ( F `  (
* `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   E.wrex 2489   _Vcvv 2779    u. cun 3175    C_ wss 3177   {csn 3646    |-> cmpt 4124   -->wf 5290   ` cfv 5294  (class class class)co 5974    ^m cmap 6765   CCcc 7965   RRcr 7966   0cc0 7967    x. cmul 7972   NN0cn0 9337   ...cfz 10172   ^cexp 10727   *ccj 11316   sum_csu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ply 15369
This theorem is referenced by:  plyreres  15403
  Copyright terms: Public domain W3C validator