ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyrecj Unicode version

Theorem plyrecj 14933
Description: A polynomial with real coefficients distributes under conjugation. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
plyrecj  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  (
* `  ( F `  A ) )  =  ( F `  (
* `  A )
) )

Proof of Theorem plyrecj
Dummy variables  a  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  F  e.  (Poly `  RR )
)
2 elply 14905 . . . 4  |-  ( F  e.  (Poly `  RR ) 
<->  ( RR  C_  CC  /\ 
E. n  e.  NN0  E. a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) F  =  (
x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) ) )
31, 2sylib 122 . . 3  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  ( RR  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) ) )
43simprd 114 . 2  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  E. n  e.  NN0  E. a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) )
5 0zd 9332 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  0  e.  ZZ )
6 simprl 529 . . . . . . . . . 10  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  n  e.  NN0 )
76nn0zd 9440 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  n  e.  ZZ )
85, 7fzfigd 10505 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
0 ... n )  e. 
Fin )
9 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  a  e.  ( ( RR  u.  {
0 } )  ^m  NN0 ) )
10 0re 8021 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
11 snssi 3763 . . . . . . . . . . . . . . . . 17  |-  ( 0  e.  RR  ->  { 0 }  C_  RR )
1210, 11ax-mp 5 . . . . . . . . . . . . . . . 16  |-  { 0 }  C_  RR
13 ssequn2 3333 . . . . . . . . . . . . . . . 16  |-  ( { 0 }  C_  RR  <->  ( RR  u.  { 0 } )  =  RR )
1412, 13mpbi 145 . . . . . . . . . . . . . . 15  |-  ( RR  u.  { 0 } )  =  RR
15 reex 8008 . . . . . . . . . . . . . . 15  |-  RR  e.  _V
1614, 15eqeltri 2266 . . . . . . . . . . . . . 14  |-  ( RR  u.  { 0 } )  e.  _V
17 nn0ex 9249 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
1816, 17elmap 6733 . . . . . . . . . . . . 13  |-  ( a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )  <->  a : NN0 --> ( RR  u.  { 0 } ) )
19 feq3 5389 . . . . . . . . . . . . . 14  |-  ( ( RR  u.  { 0 } )  =  RR 
->  ( a : NN0 --> ( RR  u.  { 0 } )  <->  a : NN0
--> RR ) )
2014, 19ax-mp 5 . . . . . . . . . . . . 13  |-  ( a : NN0 --> ( RR  u.  { 0 } )  <->  a : NN0 --> RR )
2118, 20bitri 184 . . . . . . . . . . . 12  |-  ( a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )  <->  a : NN0 --> RR )
229, 21sylib 122 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  a : NN0 --> RR )
23 elfznn0 10183 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
2423adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  k  e.  NN0 )
2522, 24ffvelcdmd 5695 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( a `  k )  e.  RR )
2625recnd 8050 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( a `  k )  e.  CC )
27 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  A  e.  CC )
2827, 24expcld 10747 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( A ^
k )  e.  CC )
2926, 28mulcld 8042 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( a `
 k )  x.  ( A ^ k
) )  e.  CC )
308, 29fsumcj 11620 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
* `  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) ) )  = 
sum_ k  e.  ( 0 ... n ) ( * `  (
( a `  k
)  x.  ( A ^ k ) ) ) )
3126, 28cjmuld 11113 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( ( a `  k )  x.  ( A ^ k ) ) )  =  ( ( * `  ( a `
 k ) )  x.  ( * `  ( A ^ k ) ) ) )
32 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) )
3332, 21sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  a : NN0 --> RR )
3433adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  a : NN0 --> RR )
3534, 24ffvelcdmd 5695 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( a `  k )  e.  RR )
3635cjred 11118 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( a `  k
) )  =  ( a `  k ) )
3727, 24cjexpd 11105 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( A ^ k ) )  =  ( ( * `  A ) ^ k ) )
3836, 37oveq12d 5937 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( * `
 ( a `  k ) )  x.  ( * `  ( A ^ k ) ) )  =  ( ( a `  k )  x.  ( ( * `
 A ) ^
k ) ) )
3931, 38eqtrd 2226 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( ( a `  k )  x.  ( A ^ k ) ) )  =  ( ( a `  k )  x.  ( ( * `
 A ) ^
k ) ) )
4039sumeq2dv 11514 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  sum_ k  e.  ( 0 ... n
) ( * `  ( ( a `  k )  x.  ( A ^ k ) ) )  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
4130, 40eqtrd 2226 . . . . . 6  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
* `  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) ) )  = 
sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
( * `  A
) ^ k ) ) )
4241adantr 276 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( * `  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( A ^ k ) ) )  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
43 simpr 110 . . . . . . . 8  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )
4443fveq1d 5557 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( F `  A
)  =  ( ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) `  A ) )
45 eqid 2193 . . . . . . . . 9  |-  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( x ^ k
) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) )
46 oveq1 5926 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x ^ k )  =  ( A ^
k ) )
4746oveq2d 5935 . . . . . . . . . 10  |-  ( x  =  A  ->  (
( a `  k
)  x.  ( x ^ k ) )  =  ( ( a `
 k )  x.  ( A ^ k
) ) )
4847sumeq2sdv 11516 . . . . . . . . 9  |-  ( x  =  A  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( A ^ k ) ) )
49 simplr 528 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  A  e.  CC )
508, 29fsumcl 11546 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) )  e.  CC )
5145, 48, 49, 50fvmptd3 5652 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) `  A )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( A ^ k ) ) )
5251adantr 276 . . . . . . 7  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) `  A
)  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) ) )
5344, 52eqtrd 2226 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( F `  A
)  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( A ^ k
) ) )
5453fveq2d 5559 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( * `  ( F `  A )
)  =  ( * `
 sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  ( A ^ k ) ) ) )
5543fveq1d 5557 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( F `  (
* `  A )
)  =  ( ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) `  ( * `
 A ) ) )
56 oveq1 5926 . . . . . . . . . 10  |-  ( x  =  ( * `  A )  ->  (
x ^ k )  =  ( ( * `
 A ) ^
k ) )
5756oveq2d 5935 . . . . . . . . 9  |-  ( x  =  ( * `  A )  ->  (
( a `  k
)  x.  ( x ^ k ) )  =  ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
5857sumeq2sdv 11516 . . . . . . . 8  |-  ( x  =  ( * `  A )  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( ( * `  A ) ^ k ) ) )
5949cjcld 11087 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
* `  A )  e.  CC )
6059adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  A )  e.  CC )
6160, 24expcld 10747 . . . . . . . . . 10  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( * `
 A ) ^
k )  e.  CC )
6226, 61mulcld 8042 . . . . . . . . 9  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) )  e.  CC )
638, 62fsumcl 11546 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) )  e.  CC )
6445, 58, 59, 63fvmptd3 5652 . . . . . . 7  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  (
( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) ) `  ( * `
 A ) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
( * `  A
) ^ k ) ) )
6564adantr 276 . . . . . 6  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) `  (
* `  A )
)  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
6655, 65eqtrd 2226 . . . . 5  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( F `  (
* `  A )
)  =  sum_ k  e.  ( 0 ... n
) ( ( a `
 k )  x.  ( ( * `  A ) ^ k
) ) )
6742, 54, 663eqtr4d 2236 . . . 4  |-  ( ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  ( n  e. 
NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) ) )  -> 
( * `  ( F `  A )
)  =  ( F `
 ( * `  A ) ) )
6867ex 115 . . 3  |-  ( ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  /\  (
n  e.  NN0  /\  a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 )
) )  ->  ( F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
x ^ k ) ) )  ->  (
* `  ( F `  A ) )  =  ( F `  (
* `  A )
) ) )
6968rexlimdvva 2619 . 2  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  ( E. n  e.  NN0  E. a  e.  ( ( RR  u.  { 0 } )  ^m  NN0 ) F  =  (
x  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( x ^ k ) ) )  ->  ( * `  ( F `  A
) )  =  ( F `  ( * `
 A ) ) ) )
704, 69mpd 13 1  |-  ( ( F  e.  (Poly `  RR )  /\  A  e.  CC )  ->  (
* `  ( F `  A ) )  =  ( F `  (
* `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   _Vcvv 2760    u. cun 3152    C_ wss 3154   {csn 3619    |-> cmpt 4091   -->wf 5251   ` cfv 5255  (class class class)co 5919    ^m cmap 6704   CCcc 7872   RRcr 7873   0cc0 7874    x. cmul 7879   NN0cn0 9243   ...cfz 10077   ^cexp 10612   *ccj 10986   sum_csu 11499  Polycply 14899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ply 14901
This theorem is referenced by:  plyreres  14934
  Copyright terms: Public domain W3C validator