ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply1 Unicode version

Theorem dvply1 15281
Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvply1.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
dvply1.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
dvply1.a  |-  ( ph  ->  A : NN0 --> CC )
dvply1.b  |-  B  =  ( k  e.  NN0  |->  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )
dvply1.n  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
dvply1  |-  ( ph  ->  ( CC  _D  F
)  =  G )
Distinct variable groups:    ph, z, k   
z, A, k    z, B    k, N, z
Allowed substitution hints:    B( k)    F( z, k)    G( z, k)

Proof of Theorem dvply1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 dvply1.f . . 3  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
21oveq2d 5967 . 2  |-  ( ph  ->  ( CC  _D  F
)  =  ( CC 
_D  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
z ^ k ) ) ) ) )
3 eqid 2206 . . . . 5  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
43cnfldtopon 15056 . . . 4  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
54toponrestid 14537 . . 3  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
6 cnelprrecn 8068 . . . 4  |-  CC  e.  { RR ,  CC }
76a1i 9 . . 3  |-  ( ph  ->  CC  e.  { RR ,  CC } )
83cnfldtop 15057 . . . 4  |-  ( TopOpen ` fld )  e.  Top
9 unicntop 15059 . . . . 5  |-  CC  =  U. ( TopOpen ` fld )
109topopn 14524 . . . 4  |-  ( (
TopOpen ` fld )  e.  Top  ->  CC  e.  ( TopOpen ` fld ) )
118, 10mp1i 10 . . 3  |-  ( ph  ->  CC  e.  ( TopOpen ` fld )
)
12 0zd 9391 . . . 4  |-  ( ph  ->  0  e.  ZZ )
13 dvply1.n . . . . 5  |-  ( ph  ->  N  e.  NN0 )
1413nn0zd 9500 . . . 4  |-  ( ph  ->  N  e.  ZZ )
1512, 14fzfigd 10583 . . 3  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
16 dvply1.a . . . . . . 7  |-  ( ph  ->  A : NN0 --> CC )
17 elfznn0 10243 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
18 ffvelcdm 5720 . . . . . . 7  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
1916, 17, 18syl2an 289 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2019adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  ( A `  k )  e.  CC )
21 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  z  e.  CC )
2217ad2antlr 489 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  k  e.  NN0 )
2321, 22expcld 10825 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  (
z ^ k )  e.  CC )
2420, 23mulcld 8100 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  (
( A `  k
)  x.  ( z ^ k ) )  e.  CC )
25243impa 1197 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  ( ( A `  k )  x.  ( z ^
k ) )  e.  CC )
26193adant3 1020 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  ( A `
 k )  e.  CC )
27 0cnd 8072 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  k  =  0 )  -> 
0  e.  CC )
28 simpl2 1004 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  ( 0 ... N ) )
2928, 17syl 14 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  NN0 )
3029nn0cnd 9357 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  CC )
31 simpl3 1005 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
z  e.  CC )
32 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  -.  k  =  0
)
33 elnn0 9304 . . . . . . . . . 10  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
3429, 33sylib 122 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( k  e.  NN  \/  k  =  0
) )
3532, 34ecased 1362 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
k  e.  NN )
36 nnm1nn0 9343 . . . . . . . 8  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
3735, 36syl 14 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( k  -  1 )  e.  NN0 )
3831, 37expcld 10825 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( z ^ (
k  -  1 ) )  e.  CC )
3930, 38mulcld 8100 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  /\  -.  k  =  0 )  -> 
( k  x.  (
z ^ ( k  -  1 ) ) )  e.  CC )
40173ad2ant2 1022 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  k  e. 
NN0 )
4140nn0zd 9500 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  k  e.  ZZ )
42 0zd 9391 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  0  e.  ZZ )
43 zdceq 9455 . . . . . 6  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ )  -> DECID  k  =  0 )
4441, 42, 43syl2anc 411 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  -> DECID  k  =  0
)
4527, 39, 44ifcldadc 3601 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) )  e.  CC )
4626, 45mulcld 8100 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
)  /\  z  e.  CC )  ->  ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) )  e.  CC )
47 0cnd 8072 . . . . 5  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  k  =  0 )  ->  0  e.  CC )
4822nn0cnd 9357 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  k  e.  CC )
4948adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  k  e.  CC )
50 simplr 528 . . . . . . 7  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  z  e.  CC )
51 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  -.  k  =  0 )
5222adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  k  e.  NN0 )
5352, 33sylib 122 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  (
k  e.  NN  \/  k  =  0 ) )
5451, 53ecased 1362 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  k  e.  NN )
5554, 36syl 14 . . . . . . 7  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  (
k  -  1 )  e.  NN0 )
5650, 55expcld 10825 . . . . . 6  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  (
z ^ ( k  -  1 ) )  e.  CC )
5749, 56mulcld 8100 . . . . 5  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  z  e.  CC )  /\  -.  k  =  0 )  ->  (
k  x.  ( z ^ ( k  - 
1 ) ) )  e.  CC )
58443expa 1206 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  -> DECID  k  =  0
)
5947, 57, 58ifcldadc 3601 . . . 4  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  z  e.  CC )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  e.  CC )
6017adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
61 dvexp2 15228 . . . . 5  |-  ( k  e.  NN0  ->  ( CC 
_D  ( z  e.  CC  |->  ( z ^
k ) ) )  =  ( z  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) ) )
6260, 61syl 14 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( CC  _D  ( z  e.  CC  |->  ( z ^
k ) ) )  =  ( z  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) ) )
6323, 59, 62, 19dvmptcmulcn 15237 . . 3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( CC  _D  ( z  e.  CC  |->  ( ( A `
 k )  x.  ( z ^ k
) ) ) )  =  ( z  e.  CC  |->  ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) ) ) )
645, 3, 7, 11, 15, 25, 46, 63dvmptfsum 15241 . 2  |-  ( ph  ->  ( CC  _D  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) ) ) )
65 elfznn 10183 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
6665nnne0d 9088 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  =/=  0 )
6766neneqd 2398 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  -.  k  =  0 )
6867adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  -.  k  =  0 )
6968iffalsed 3582 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  =  ( k  x.  ( z ^
( k  -  1 ) ) ) )
7069oveq2d 5967 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) )  =  ( ( A `  k )  x.  ( k  x.  ( z ^ (
k  -  1 ) ) ) ) )
7170sumeq2dv 11723 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  = 
sum_ k  e.  ( 1 ... N ) ( ( A `  k )  x.  (
k  x.  ( z ^ ( k  - 
1 ) ) ) ) )
72 1eluzge0 9702 . . . . . . 7  |-  1  e.  ( ZZ>= `  0 )
73 fzss1 10192 . . . . . . 7  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
7472, 73mp1i 10 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 1 ... N )  C_  ( 0 ... N
) )
7516adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  A : NN0
--> CC )
7665nnnn0d 9355 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN0 )
7775, 76, 18syl2an 289 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  ( A `  k )  e.  CC )
7866adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  k  =/=  0 )
7978neneqd 2398 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  -.  k  =  0 )
8079iffalsed 3582 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  =  ( k  x.  ( z ^
( k  -  1 ) ) ) )
8176adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  k  e.  NN0 )
8281nn0cnd 9357 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  k  e.  CC )
83 simplr 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  z  e.  CC )
8465, 36syl 14 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... N )  ->  (
k  -  1 )  e.  NN0 )
8584adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
k  -  1 )  e.  NN0 )
8683, 85expcld 10825 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
z ^ ( k  -  1 ) )  e.  CC )
8782, 86mulcld 8100 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
k  x.  ( z ^ ( k  - 
1 ) ) )  e.  CC )
8880, 87eqeltrd 2283 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) )  e.  CC )
8977, 88mulcld 8100 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) )  e.  CC )
90 eldifn 3297 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  ->  -.  k  e.  ( 1 ... N ) )
91 0p1e1 9157 . . . . . . . . . . . . . 14  |-  ( 0  +  1 )  =  1
9291oveq1i 5961 . . . . . . . . . . . . 13  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
9392eleq2i 2273 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0  +  1 ) ... N )  <->  k  e.  ( 1 ... N
) )
9490, 93sylnibr 679 . . . . . . . . . . 11  |-  ( k  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  ->  -.  k  e.  ( (
0  +  1 ) ... N ) )
9594adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  -.  k  e.  ( ( 0  +  1 ) ... N
) )
96 eldifi 3296 . . . . . . . . . . . 12  |-  ( k  e.  ( ( 0 ... N )  \ 
( 1 ... N
) )  ->  k  e.  ( 0 ... N
) )
9796adantl 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  k  e.  ( 0 ... N
) )
98 nn0uz 9690 . . . . . . . . . . . . . 14  |-  NN0  =  ( ZZ>= `  0 )
9913, 98eleqtrdi 2299 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
10099ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  N  e.  ( ZZ>= `  0 )
)
101 elfzp12 10228 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( k  e.  ( 0 ... N
)  <->  ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) ) ) )
102100, 101syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( k  e.  ( 0 ... N
)  <->  ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) ) ) )
10397, 102mpbid 147 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( k  =  0  \/  k  e.  ( ( 0  +  1 ) ... N
) ) )
10495, 103ecased 1362 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  k  = 
0 )
105104iftrued 3579 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  if (
k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) )  =  0 )
106105oveq2d 5967 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  =  ( ( A `  k )  x.  0 ) )
10775, 17, 18syl2an 289 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
108107mul01d 8472 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  0 )  =  0 )
10996, 108sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( ( A `  k )  x.  0 )  =  0 )
110106, 109eqtrd 2239 . . . . . 6  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  (
1 ... N ) ) )  ->  ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  =  0 )
111 elfzelz 10154 . . . . . . . . 9  |-  ( j  e.  ( 0 ... N )  ->  j  e.  ZZ )
112111adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... N
) )  ->  j  e.  ZZ )
113 1zzd 9406 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... N
) )  ->  1  e.  ZZ )
11414ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
115 fzdcel 10169 . . . . . . . 8  |-  ( ( j  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )  -> DECID  j  e.  (
1 ... N ) )
116112, 113, 114, 115syl3anc 1250 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... N
) )  -> DECID  j  e.  (
1 ... N ) )
117116ralrimiva 2580 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  A. j  e.  ( 0 ... N
)DECID  j  e.  ( 1 ... N ) )
118 0zd 9391 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  0  e.  ZZ )
11914adantr 276 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  N  e.  ZZ )
120118, 119fzfigd 10583 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  ( 0 ... N )  e. 
Fin )
12174, 89, 110, 117, 120fisumss 11747 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^ ( k  - 
1 ) ) ) ) ) )
122 elfznn0 10243 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  j  e.  NN0 )
123122adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  j  e.  NN0 )
124123nn0cnd 9357 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  j  e.  CC )
125 ax-1cn 8025 . . . . . . . . . . . . 13  |-  1  e.  CC
126 pncan 8285 . . . . . . . . . . . . 13  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  1 )  =  j )
127124, 125, 126sylancl 413 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( j  +  1 )  -  1 )  =  j )
128127oveq2d 5967 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
z ^ ( ( j  +  1 )  -  1 ) )  =  ( z ^
j ) )
129128oveq2d 5967 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( j  +  1 )  x.  ( z ^ ( ( j  +  1 )  - 
1 ) ) )  =  ( ( j  +  1 )  x.  ( z ^ j
) ) )
130129oveq2d 5967 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) )  =  ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ j ) ) ) )
13116ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  A : NN0 --> CC )
132 peano2nn0 9342 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
133122, 132syl 14 . . . . . . . . . . . 12  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  (
j  +  1 )  e.  NN0 )
134133adantl 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  +  1 )  e.  NN0 )
135131, 134ffvelcdmd 5723 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A `  ( j  +  1 ) )  e.  CC )
136134nn0cnd 9357 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
j  +  1 )  e.  CC )
137 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  z  e.  CC )
138137, 123expcld 10825 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
z ^ j )  e.  CC )
139135, 136, 138mulassd 8103 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( A `  ( j  +  1 ) )  x.  (
j  +  1 ) )  x.  ( z ^ j ) )  =  ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ j ) ) ) )
140135, 136mulcomd 8101 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A `  (
j  +  1 ) )  x.  ( j  +  1 ) )  =  ( ( j  +  1 )  x.  ( A `  (
j  +  1 ) ) ) )
141140oveq1d 5966 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( A `  ( j  +  1 ) )  x.  (
j  +  1 ) )  x.  ( z ^ j ) )  =  ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j
) ) )
142130, 139, 1413eqtr2d 2245 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) )  =  ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j
) ) )
143142sumeq2dv 11723 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j ) ) )
144 1m1e0 9112 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
145144oveq1i 5961 . . . . . . . 8  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
146145sumeq1i 11718 . . . . . . 7  |-  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) )
147 oveq1 5958 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  +  1 )  =  ( j  +  1 ) )
148 fvoveq1 5974 . . . . . . . . . 10  |-  ( k  =  j  ->  ( A `  ( k  +  1 ) )  =  ( A `  ( j  +  1 ) ) )
149147, 148oveq12d 5969 . . . . . . . . 9  |-  ( k  =  j  ->  (
( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  =  ( ( j  +  1 )  x.  ( A `  (
j  +  1 ) ) ) )
150 oveq2 5959 . . . . . . . . 9  |-  ( k  =  j  ->  (
z ^ k )  =  ( z ^
j ) )
151149, 150oveq12d 5969 . . . . . . . 8  |-  ( k  =  j  ->  (
( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k ) )  =  ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j
) ) )
152151cbvsumv 11716 . . . . . . 7  |-  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k
) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( j  +  1 )  x.  ( A `  ( j  +  1 ) ) )  x.  ( z ^ j ) )
153143, 146, 1523eqtr4g 2264 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k ) ) )
154 1zzd 9406 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  1  e.  ZZ )
15513adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  N  e. 
NN0 )
156155nn0zd 9500 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  N  e.  ZZ )
15777, 87mulcld 8100 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 1 ... N
) )  ->  (
( A `  k
)  x.  ( k  x.  ( z ^
( k  -  1 ) ) ) )  e.  CC )
158 fveq2 5583 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  ( A `  k )  =  ( A `  ( j  +  1 ) ) )
159 id 19 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  k  =  ( j  +  1 ) )
160 oveq1 5958 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  (
k  -  1 )  =  ( ( j  +  1 )  - 
1 ) )
161160oveq2d 5967 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  (
z ^ ( k  -  1 ) )  =  ( z ^
( ( j  +  1 )  -  1 ) ) )
162159, 161oveq12d 5969 . . . . . . . 8  |-  ( k  =  ( j  +  1 )  ->  (
k  x.  ( z ^ ( k  - 
1 ) ) )  =  ( ( j  +  1 )  x.  ( z ^ (
( j  +  1 )  -  1 ) ) ) )
163158, 162oveq12d 5969 . . . . . . 7  |-  ( k  =  ( j  +  1 )  ->  (
( A `  k
)  x.  ( k  x.  ( z ^
( k  -  1 ) ) ) )  =  ( ( A `
 ( j  +  1 ) )  x.  ( ( j  +  1 )  x.  (
z ^ ( ( j  +  1 )  -  1 ) ) ) ) )
164154, 154, 156, 157, 163fsumshftm 11800 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  ( k  x.  (
z ^ ( k  -  1 ) ) ) )  =  sum_ j  e.  ( (
1  -  1 ) ... ( N  - 
1 ) ) ( ( A `  (
j  +  1 ) )  x.  ( ( j  +  1 )  x.  ( z ^
( ( j  +  1 )  -  1 ) ) ) ) )
165 elfznn0 10243 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
166165adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  NN0 )
167 peano2nn0 9342 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
168166, 167syl 14 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
k  +  1 )  e.  NN0 )
169168nn0cnd 9357 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
k  +  1 )  e.  CC )
17016ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  A : NN0 --> CC )
171170, 168ffvelcdmd 5723 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A `  ( k  +  1 ) )  e.  CC )
172169, 171mulcld 8100 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) )  e.  CC )
173 dvply1.b . . . . . . . . . 10  |-  B  =  ( k  e.  NN0  |->  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) ) )
174173fvmpt2 5670 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  e.  CC )  ->  ( B `  k )  =  ( ( k  +  1 )  x.  ( A `
 ( k  +  1 ) ) ) )
175166, 172, 174syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( B `  k )  =  ( ( k  +  1 )  x.  ( A `  (
k  +  1 ) ) ) )
176175oveq1d 5966 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  CC )  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( B `  k
)  x.  ( z ^ k ) )  =  ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k
) ) )
177176sumeq2dv 11723 . . . . . 6  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( ( k  +  1 )  x.  ( A `  ( k  +  1 ) ) )  x.  ( z ^ k ) ) )
178153, 164, 1773eqtr4d 2249 . . . . 5  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 1 ... N
) ( ( A `
 k )  x.  ( k  x.  (
z ^ ( k  -  1 ) ) ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( B `  k
)  x.  ( z ^ k ) ) )
17971, 121, 1783eqtr3d 2247 . . . 4  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
z ^ ( k  -  1 ) ) ) ) )  = 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `  k )  x.  (
z ^ k ) ) )
180179mpteq2dva 4138 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( B `  k
)  x.  ( z ^ k ) ) ) )
181 dvply1.g . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
182180, 181eqtr4d 2242 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( z ^
( k  -  1 ) ) ) ) ) )  =  G )
1832, 64, 1823eqtrd 2243 1  |-  ( ph  ->  ( CC  _D  F
)  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377    \ cdif 3164    C_ wss 3167   ifcif 3572   {cpr 3635    |-> cmpt 4109   -->wf 5272   ` cfv 5276  (class class class)co 5951   CCcc 7930   RRcr 7931   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937    - cmin 8250   NNcn 9043   NN0cn0 9302   ZZcz 9379   ZZ>=cuz 9655   ...cfz 10137   ^cexp 10690   sum_csu 11708   TopOpenctopn 13116  ℂfldccnfld 14362   Topctop 14513    _D cdv 15171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-map 6744  df-pm 6745  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-starv 12968  df-tset 12972  df-ple 12973  df-ds 12975  df-unif 12976  df-rest 13117  df-topn 13118  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-fg 14355  df-metu 14356  df-cnfld 14363  df-top 14514  df-topon 14527  df-topsp 14547  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-tx 14769  df-xms 14855  df-ms 14856  df-cncf 15087  df-limced 15172  df-dvap 15173
This theorem is referenced by:  dvply2g  15282
  Copyright terms: Public domain W3C validator