ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwm1geoserap1 Unicode version

Theorem pwm1geoserap1 11676
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series  1  +  A ^ 1  +  A ^ 2  +...  +  A ^ ( N  - 
1 ). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
pwm1geoser.1  |-  ( ph  ->  A  e.  CC )
pwm1geoser.3  |-  ( ph  ->  N  e.  NN0 )
pwm1geoserap1.ap  |-  ( ph  ->  A #  1 )
Assertion
Ref Expression
pwm1geoserap1  |-  ( ph  ->  ( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) )
Distinct variable groups:    A, k    k, N    ph, k

Proof of Theorem pwm1geoserap1
StepHypRef Expression
1 pwm1geoser.1 . . 3  |-  ( ph  ->  A  e.  CC )
2 pwm1geoserap1.ap . . 3  |-  ( ph  ->  A #  1 )
3 pwm1geoser.3 . . 3  |-  ( ph  ->  N  e.  NN0 )
41, 2, 3geoserap 11675 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
5 eqcom 2198 . . 3  |-  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  =  ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) )  <->  ( (
1  -  ( A ^ N ) )  /  ( 1  -  A ) )  = 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) )
6 1cnd 8045 . . . . . 6  |-  ( ph  ->  1  e.  CC )
71, 3expcld 10768 . . . . . 6  |-  ( ph  ->  ( A ^ N
)  e.  CC )
8 apsym 8636 . . . . . . . 8  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  1 #  A ) )
91, 6, 8syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( A #  1  <->  1 #  A ) )
102, 9mpbid 147 . . . . . 6  |-  ( ph  ->  1 #  A )
116, 7, 6, 1, 10div2subapd 8868 . . . . 5  |-  ( ph  ->  ( ( 1  -  ( A ^ N
) )  /  (
1  -  A ) )  =  ( ( ( A ^ N
)  -  1 )  /  ( A  - 
1 ) ) )
1211eqeq1d 2205 . . . 4  |-  ( ph  ->  ( ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  <-> 
( ( ( A ^ N )  - 
1 )  /  ( A  -  1 ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k ) ) )
13 peano2cnm 8295 . . . . . 6  |-  ( ( A ^ N )  e.  CC  ->  (
( A ^ N
)  -  1 )  e.  CC )
147, 13syl 14 . . . . 5  |-  ( ph  ->  ( ( A ^ N )  -  1 )  e.  CC )
15 0zd 9341 . . . . . . 7  |-  ( ph  ->  0  e.  ZZ )
163nn0zd 9449 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
17 peano2zm 9367 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
1816, 17syl 14 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
1915, 18fzfigd 10526 . . . . . 6  |-  ( ph  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
201adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  A  e.  CC )
21 elfznn0 10192 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
2221adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  NN0 )
2320, 22expcld 10768 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A ^ k )  e.  CC )
2419, 23fsumcl 11568 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  e.  CC )
25 peano2cnm 8295 . . . . . 6  |-  ( A  e.  CC  ->  ( A  -  1 )  e.  CC )
261, 25syl 14 . . . . 5  |-  ( ph  ->  ( A  -  1 )  e.  CC )
271, 6, 2subap0d 8674 . . . . 5  |-  ( ph  ->  ( A  -  1 ) #  0 )
2814, 24, 26, 27divmulap2d 8854 . . . 4  |-  ( ph  ->  ( ( ( ( A ^ N )  -  1 )  / 
( A  -  1 ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  <-> 
( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) ) )
2912, 28bitrd 188 . . 3  |-  ( ph  ->  ( ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  <-> 
( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) ) )
305, 29bitrid 192 . 2  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ N ) )  /  ( 1  -  A ) )  <->  ( ( A ^ N )  - 
1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k ) ) ) )
314, 30mpbid 147 1  |-  ( ph  ->  ( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5923   CCcc 7880   0cc0 7882   1c1 7883    x. cmul 7887    - cmin 8200   # cap 8611    / cdiv 8702   NN0cn0 9252   ZZcz 9329   ...cfz 10086   ^cexp 10633   sum_csu 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-irdg 6430  df-frec 6451  df-1o 6476  df-oadd 6480  df-er 6594  df-en 6802  df-dom 6803  df-fin 6804  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-fz 10087  df-fzo 10221  df-seqfrec 10543  df-exp 10634  df-ihash 10871  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-clim 11447  df-sumdc 11522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator