ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwm1geoserap1 Unicode version

Theorem pwm1geoserap1 11530
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series  1  +  A ^ 1  +  A ^ 2  +...  +  A ^ ( N  - 
1 ). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
Hypotheses
Ref Expression
pwm1geoser.1  |-  ( ph  ->  A  e.  CC )
pwm1geoser.3  |-  ( ph  ->  N  e.  NN0 )
pwm1geoserap1.ap  |-  ( ph  ->  A #  1 )
Assertion
Ref Expression
pwm1geoserap1  |-  ( ph  ->  ( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) )
Distinct variable groups:    A, k    k, N    ph, k

Proof of Theorem pwm1geoserap1
StepHypRef Expression
1 pwm1geoser.1 . . 3  |-  ( ph  ->  A  e.  CC )
2 pwm1geoserap1.ap . . 3  |-  ( ph  ->  A #  1 )
3 pwm1geoser.3 . . 3  |-  ( ph  ->  N  e.  NN0 )
41, 2, 3geoserap 11529 . 2  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
5 eqcom 2189 . . 3  |-  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  =  ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) )  <->  ( (
1  -  ( A ^ N ) )  /  ( 1  -  A ) )  = 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) )
6 1cnd 7987 . . . . . 6  |-  ( ph  ->  1  e.  CC )
71, 3expcld 10668 . . . . . 6  |-  ( ph  ->  ( A ^ N
)  e.  CC )
8 apsym 8577 . . . . . . . 8  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A #  1  <->  1 #  A ) )
91, 6, 8syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( A #  1  <->  1 #  A ) )
102, 9mpbid 147 . . . . . 6  |-  ( ph  ->  1 #  A )
116, 7, 6, 1, 10div2subapd 8809 . . . . 5  |-  ( ph  ->  ( ( 1  -  ( A ^ N
) )  /  (
1  -  A ) )  =  ( ( ( A ^ N
)  -  1 )  /  ( A  - 
1 ) ) )
1211eqeq1d 2196 . . . 4  |-  ( ph  ->  ( ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  <-> 
( ( ( A ^ N )  - 
1 )  /  ( A  -  1 ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k ) ) )
13 peano2cnm 8237 . . . . . 6  |-  ( ( A ^ N )  e.  CC  ->  (
( A ^ N
)  -  1 )  e.  CC )
147, 13syl 14 . . . . 5  |-  ( ph  ->  ( ( A ^ N )  -  1 )  e.  CC )
15 0zd 9279 . . . . . . 7  |-  ( ph  ->  0  e.  ZZ )
163nn0zd 9387 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
17 peano2zm 9305 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
1816, 17syl 14 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
1915, 18fzfigd 10445 . . . . . 6  |-  ( ph  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
201adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  A  e.  CC )
21 elfznn0 10128 . . . . . . . 8  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
2221adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  k  e.  NN0 )
2320, 22expcld 10668 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A ^ k )  e.  CC )
2419, 23fsumcl 11422 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  e.  CC )
25 peano2cnm 8237 . . . . . 6  |-  ( A  e.  CC  ->  ( A  -  1 )  e.  CC )
261, 25syl 14 . . . . 5  |-  ( ph  ->  ( A  -  1 )  e.  CC )
271, 6, 2subap0d 8615 . . . . 5  |-  ( ph  ->  ( A  -  1 ) #  0 )
2814, 24, 26, 27divmulap2d 8795 . . . 4  |-  ( ph  ->  ( ( ( ( A ^ N )  -  1 )  / 
( A  -  1 ) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  <-> 
( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) ) )
2912, 28bitrd 188 . . 3  |-  ( ph  ->  ( ( ( 1  -  ( A ^ N ) )  / 
( 1  -  A
) )  =  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( A ^ k )  <-> 
( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) ) )
305, 29bitrid 192 . 2  |-  ( ph  ->  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
)  =  ( ( 1  -  ( A ^ N ) )  /  ( 1  -  A ) )  <->  ( ( A ^ N )  - 
1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^
k ) ) ) )
314, 30mpbid 147 1  |-  ( ph  ->  ( ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   CCcc 7823   0cc0 7825   1c1 7826    x. cmul 7830    - cmin 8142   # cap 8552    / cdiv 8643   NN0cn0 9190   ZZcz 9267   ...cfz 10022   ^cexp 10533   sum_csu 11375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-en 6755  df-dom 6756  df-fin 6757  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-ihash 10770  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator